PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  RNA viral vectors for improved Agrobacterium-mediated transient expression of heterologous proteins in Nicotiana benthamiana cell suspensions and hairy roots 
BMC Biotechnology  2012;12:21.
Background
Plant cell suspensions and hairy root cultures represent scalable protein expression platforms. Low protein product titers have thus far limited the application of transient protein expression in these hosts. The objective of this work was to overcome this limitation by harnessing A. tumefaciens to deliver replicating and non-replicating RNA viral vectors in plant tissue co-cultures.
Results
Replicating vectors derived from Potato virus X (PVX) and Tobacco rattle virus (TRV) were modified to contain the reporter gene β-glucuronidase (GUS) with a plant intron to prevent bacterial expression. In cell suspensions, a minimal PVX vector retaining only the viral RNA polymerase gene yielded 6.6-fold more GUS than an analogous full-length PVX vector. Transient co-expression of the minimal PVX vector with P19 of Tomato bushy stunt virus or HC-Pro of Tobacco etch virus to suppress post-transcriptional gene silencing increased GUS expression by 44 and 83%, respectively. A non-replicating vector containing a leader sequence from Cowpea mosaic virus (CPMV-HT) modified for enhanced translation led to 70% higher transient GUS expression than a control treatment. In hairy roots, a TRV vector capable of systemic movement increased GUS accumulation by 150-fold relative to the analogous PVX vector. Histochemical staining for GUS in TRV-infected hairy roots revealed the capacity for achieving even higher productivity per unit biomass.
Conclusions
For the first time, replicating PVX vectors and a non-replicating CPMV-HT vector were successfully applied toward transient heterologous protein expression in cell suspensions. A replicating TRV vector achieved transient GUS expression levels in hairy roots more than an order of magnitude higher than the highest level previously reported with a viral vector delivered by A. tumefaciens.
doi:10.1186/1472-6750-12-21
PMCID: PMC3403893  PMID: 22559055
Plant tissue culture; Gene silencing; Viral vectors; Hairy roots; Plant cell suspensions; Potato virus X; Tobacco rattle virus; Transient protein expression; Agrobacterium tumefaciens
2.  Long-Distance Translocation of Protein during Morphogenesis of the Fruiting Body in the Filamentous Fungus, Agaricus bisporus 
PLoS ONE  2011;6(12):e28412.
Commercial cultivation of the mushroom fungus, Agaricus bisporus, utilizes a substrate consisting of a lower layer of compost and upper layer of peat. Typically, the two layers are seeded with individual mycelial inoculants representing a single genotype of A. bisporus. Studies aimed at examining the potential of this fungal species as a heterologous protein expression system have revealed unexpected contributions of the mycelial inoculants in the morphogenesis of the fruiting body. These contributions were elucidated using a dual-inoculant method whereby the two layers were differientially inoculated with transgenic β-glucuronidase (GUS) and wild-type (WT) lines. Surprisingly, use of a transgenic GUS line in the lower substrate and a WT line in the upper substrate yielded fruiting bodies expressing GUS activity while lacking the GUS transgene. Results of PCR and RT-PCR analyses for the GUS transgene and RNA transcript, respectively, suggested translocation of the GUS protein from the transgenic mycelium colonizing the lower layer into the fruiting body that developed exclusively from WT mycelium colonizing the upper layer. Effective translocation of the GUS protein depended on the use of a transgenic line in the lower layer in which the GUS gene was controlled by a vegetative mycelium-active promoter (laccase 2 and β-actin), rather than a fruiting body-active promoter (hydrophobin A). GUS-expressing fruiting bodies lacking the GUS gene had a bonafide WT genotype, confirmed by the absence of stably inherited GUS and hygromycin phosphotransferase selectable marker activities in their derived basidiospores and mycelial tissue cultures. Differientially inoculating the two substrate layers with individual lines carrying the GUS gene controlled by different tissue-preferred promoters resulted in up to a ∼3.5-fold increase in GUS activity over that obtained with a single inoculant. Our findings support the existence of a previously undescribed phenomenon of long-distance protein translocation in A. bisporus that has potential application in recombinant protein expression and biotechnological approaches for crop improvement.
doi:10.1371/journal.pone.0028412
PMCID: PMC3232199  PMID: 22163014

Results 1-2 (2)