Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Diffusion of small molecules into medaka embryos improved by electroporation 
BMC Biotechnology  2013;13:53.
Diffusion of small molecules into fish embryos is essential for many experimental procedures in developmental biology and toxicology. Since we observed a weak uptake of lithium into medaka eggs we started a detailed analysis of its diffusion properties using small fluorescent molecules.
Contrary to our expectations, not the rigid outer chorion but instead membrane systems surrounding the embryo/yolk turned out to be the limiting factor for diffusion into medaka eggs. The consequence is a bi-phasic uptake of small molecules first reaching the pervitelline space with a diffusion half-time in the range of a few minutes. This is followed by a slow second phase (half-time in the range of several hours) during which accumulation in the embryo/yolk takes place. Treatment with detergents improved the uptake, but strongly affected the internal distribution of the molecules. Testing electroporation we could establish conditions to overcome the diffusion barrier. Applying this method to lithium chloride we observed anterior truncations in medaka embryos in agreement with its proposed activation of Wnt signalling.
The diffusion of small molecules into medaka embryos is slow, caused by membrane systems underneath the chorion. These results have important implications for pharmacologic/toxicologic techniques like the fish embryo test, which therefore require extended incubation times in order to reach sufficient concentrations in the embryos.
PMCID: PMC3716799  PMID: 23815821
Medaka; Small molecules; Diffusion; Toxicology; Electroporation; LiCl
2.  Side chain modified peptide nucleic acids (PNA) for knock-down of six3 in medaka embryos 
BMC Biotechnology  2012;12:50.
Synthetic antisense molecules have an enormous potential for therapeutic applications in humans. The major aim of such strategies is to specifically interfere with gene function, thus modulating cellular pathways according to the therapeutic demands. Among the molecules which can block mRNA function in a sequence specific manner are peptide nucleic acids (PNA). They are highly stable and efficiently and selectively interact with RNA. However, some properties of non-modified aminoethyl glycine PNAs (aegPNA) hamper their in vivo applications.
We generated new backbone modifications of PNAs, which exhibit more hydrophilic properties. When we examined the activity and specificity of these novel phosphonic ester PNAs (pePNA) molecules in medaka (Oryzias latipes) embryos, high solubility and selective binding to mRNA was observed. In particular, mixing of the novel components with aegPNA components resulted in mixed PNAs with superior properties. Injection of mixed PNAs directed against the medaka six3 gene, which is important for eye and brain development, resulted in specific six3 phenotypes.
PNAs are well established as powerful antisense molecules. Modification of the backbone with phosphonic ester side chains further improves their properties and allows the efficient knock down of a single gene in fish embryos.
PMCID: PMC3469332  PMID: 22901024
PNA; Knock down; Medaka; Six3
3.  Induction of otic structures by canonical Wnt signalling in medaka 
Development Genes and Evolution  2009;219(8):391-398.
The Wnt family of signalling proteins is known to participate in multiple developmental decisions during embryogenesis. We misexpressed Wnt1 in medaka embryos and observed anterior truncations, similar to those described for ectopic activation of canonical Wnt signalling in other species. Interestingly, when we induced a heat-shock Wnt1 transgenic line exactly at 30% epiboly, we observed multiple ectopic otic vesicles in the truncated embryos. The vesicles then fused, forming a single large ear structure. These “cyclopic ears” filled the complete anterior region of the embryos. The ectopic induction of otic development can be explained by the juxtaposition of hindbrain tissue with anterior ectoderm. Fibroblast growth factor (Fgf) ligands are thought to mediate the otic-inducing properties of the hindbrain. However, signals different from Fgf3 and Fgf8 are necessary to explain the formation of the ectopic ear structures, suggesting that Wnt signalling is involved in the otic induction process in medaka.
Electronic supplementary material
The online version of this article (doi:10.1007/s00427-009-0302-z) contains supplementary material, which is available to authorized users.
PMCID: PMC2773112  PMID: 19760182
Wnt1; Otic induction; Cyclopic ear; Medaka
4.  The patatin-like lipase family in Gallus gallus 
BMC Genomics  2008;9:281.
In oviparous species, genes encoding proteins with functions in lipid remodeling, such as specialized lipases, may have evolved to facilitate the assembly and utilization of yolk lipids by the embryo. The mammalian gene family of patatin-like phospholipases (PNPLAs) has received significant attention, but studies in other vertebrates are lacking; thus, we have begun investigations of PNPLA genes in the chicken (Gallus gallus).
We scanned the draft chicken genome using human PNPLA sequences, and performed PCR to amplify and sequence orthologous cDNAs. Full-length cDNA sequences of galline PNPLA2/ATGL, PNPLA4, -7, -8, -9, and the activator protein CGI-58, as well as partial cDNA sequences of avian PNPLA1, -3, and -6 were obtained. The high degree of sequence identities (~50 to 80%) between the avian and human orthologs suggests conservation of important enzymatic functions. Quantitation by qPCR of the transcript levels of PNPLAs and CGI-58 in 21 tissues indicates that expression patterns and levels diverge greatly between species. A particularly interesting tissue in which certain PNPLAs may contribute to physiological specialization is the extraembryonic yolk sac.
Knowledge about the exact in-vivo functions of PNPLAs in any system is still sparse. Thus, studies about the temporal expression patterns and functions of the enzymes identified here, and of other already known extracellular lipases and co-factors, in the yolk sac and embryonic tissues during embryogenesis are called for. Based on the information obtained, further studies are anticipated to provide important insights of the roles of PNPLAs in the yolk sac and embryo development.
PMCID: PMC2435558  PMID: 18549477

Results 1-4 (4)