PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Dense chitosan surgical membranes produced by a coincident compression-dehydration process 
High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients.
doi:10.1080/09205063.2012.701549
PMCID: PMC3623014  PMID: 23565872
chitosan; membrane; wound healing; biodegradation; resorbable; mechanical properties; suture
2.  Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis 
BMC Biotechnology  2012;12:60.
Background
Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo.
Results
Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™).
Conclusions
A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.
doi:10.1186/1472-6750-12-60
PMCID: PMC3485628  PMID: 22967000
Osteogenesis; BMP-2; Heparan sulfate; Chondroitin sulfate; Proteoglycan; TCP; Bone graft; Implant; Osteoblast; Perlecan
3.  Similarity of Recombinant Human Perlecan Domain 1 by Alternative Expression Systems Bioactive Heterogenous Recombinant Human Perlecan D1 
BMC Biotechnology  2010;10:66.
Background
Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology.
Results
By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess glycosaminoglycan chains ranging, in total, from 6 kDa to >90 kDa per recombinant. Immunoblot analysis of enzyme-digested high Mr rhPln.D1 demonstrated that the rhPln.D1 was synthesized as either a chondroitin sulfate or heparan sulfate proteoglycan, in an approximately 2:1 ratio, with negligible hybrids. Secondary structure analysis suggested helices and sheets in both recombinant species. rhPln.D1 demonstrated binding to rhFGF-2 with an apparent kD of 2 ± 0.2 nM with almost complete susceptibility to digestion by heparinase III in ligand blot analysis but not to chondroitinase digestion. Additionally, we demonstrate HS-mediated binding of both rhPln.D1 species to several other GFs. Finally, we corroborate the augmentation of FGF-mediated cell activation by rhPln.D1 and demonstrate mitogenic signalling through the FGFR1c receptor.
Conclusions
With importance especially to the emerging field of DNA-based therapeutics, we have shown here that proteoglycan synthesis, in different cell lines where GAG profiles typically differ, can be directed by recombinant technology to produce populations of bioactive recombinants with highly similar GAG profiles.
doi:10.1186/1472-6750-10-66
PMCID: PMC2944331  PMID: 20828410
4.  Facilitating Chromophore Formation of Engineered Ca2+ Binding Green Fluorescent Proteins 
Green fluorescent protein (GFP) containing a self-coded chromophore has been applied in protein trafficking and folding, gene expression, and as sensors in living cells. While the “cycle3” mutation denoted as C3 mutation (F99S/M153T/V163A) offer the ability to increase GFP fluorescence at 37 °C, it is not clear whether such mutations will also be able to assist the folding and formation of the chromophore upon the addition of metal ion binding sites. Here, we investigate in both bacterial and mammalian systems, the effect of C2 (M153T/V163A) and C3 (F99S/M153T/V163A) mutations on the folding of enhanced GFP (EGFP, includes F64L/S65T) and its variants engineered with two types of Ca2+ binding sites: (1) a designed discontinuous Ca2+ binding site and (2) a grafted continuous Ca2+-binding motif. We show that, for the constructed EGFP variants, the C2 mutation is sufficient to facilitate the production of fluorescence in both bacterial and mammalian cells. Further addition of the mutation F99S decreases the folding efficiency of these variants although a similar effect is not detectable for EGFP, likely due to the already greatly enhanced mutation F64L/S65T from the original GFP, which hastens the chromophore formation. The extinction coefficient and quantum yield of purified proteins of each construct were also examined to compare the effects of both C2 and C3 mutations on protein spectroscopic properties. Our quantitative analyses of the effect of C2 and C3 mutations on the folding and formation of GFP chromophore that undergoes different folding trajectories in bacterial versus mammalian cells provide insights into the development of fluorescent protein-based analytical sensors.
doi:10.1016/j.abb.2009.03.016
PMCID: PMC2774846  PMID: 19358822
Green fluorescent protein; fluorescent imaging; protein stability; protein folding; chromophore formation; cycle 3 mutation

Results 1-4 (4)