PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Dense chitosan surgical membranes produced by a coincident compression-dehydration process 
High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients.
doi:10.1080/09205063.2012.701549
PMCID: PMC3623014  PMID: 23565872
chitosan; membrane; wound healing; biodegradation; resorbable; mechanical properties; suture
2.  Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis 
BMC Biotechnology  2012;12:60.
Background
Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo.
Results
Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™).
Conclusions
A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.
doi:10.1186/1472-6750-12-60
PMCID: PMC3485628  PMID: 22967000
Osteogenesis; BMP-2; Heparan sulfate; Chondroitin sulfate; Proteoglycan; TCP; Bone graft; Implant; Osteoblast; Perlecan
3.  Similarity of Recombinant Human Perlecan Domain 1 by Alternative Expression Systems Bioactive Heterogenous Recombinant Human Perlecan D1 
BMC Biotechnology  2010;10:66.
Background
Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology.
Results
By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess glycosaminoglycan chains ranging, in total, from 6 kDa to >90 kDa per recombinant. Immunoblot analysis of enzyme-digested high Mr rhPln.D1 demonstrated that the rhPln.D1 was synthesized as either a chondroitin sulfate or heparan sulfate proteoglycan, in an approximately 2:1 ratio, with negligible hybrids. Secondary structure analysis suggested helices and sheets in both recombinant species. rhPln.D1 demonstrated binding to rhFGF-2 with an apparent kD of 2 ± 0.2 nM with almost complete susceptibility to digestion by heparinase III in ligand blot analysis but not to chondroitinase digestion. Additionally, we demonstrate HS-mediated binding of both rhPln.D1 species to several other GFs. Finally, we corroborate the augmentation of FGF-mediated cell activation by rhPln.D1 and demonstrate mitogenic signalling through the FGFR1c receptor.
Conclusions
With importance especially to the emerging field of DNA-based therapeutics, we have shown here that proteoglycan synthesis, in different cell lines where GAG profiles typically differ, can be directed by recombinant technology to produce populations of bioactive recombinants with highly similar GAG profiles.
doi:10.1186/1472-6750-10-66
PMCID: PMC2944331  PMID: 20828410
4.  Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis 
BMC Microbiology  2008;8:26.
Background
Porphyromonas gingivalis is associated with periodontal disease and invades different cell types including epithelial, endothelial and smooth muscle cells. In addition to P. gingivalis DNA, we have previously identified live invasive bacteria in atheromatous tissue. However, the mechanism of persistence of this organism in vascular tissues remains unclear. Therefore, the objective of this study was to analyze the ability of intracellular P. gingivalis to persist for extended periods of time, transmit to and possibly replicate in different cell types.
Results
Using antibiotic protection assays, immunofluorescent and laser confocal microscopy, we found that after a prolonged intracellular phase, while P. gingivalis can still be detected by immunostaining, the intracellular organisms lose their ability to be recovered in vitro. Surprisingly however, intracellular P. gingivalis could be recovered in vitro upon co incubation with fresh vascular host cells. We then demonstrated that the organism was able to exit the initially infected host cells, then enter and multiply in new host cells. Further, we found that cell-to-cell contact increased the transmission rate but was not required for transmission. Finally, we found that the invasion of new host cells allowed P. gingivalis to increase its numbers.
Conclusion
Our results suggest that the persistence of vascular tissue-embedded P. gingivalis is due to its ability to transmit among different cell types. This is the first communication demonstrating the intercellular transmission as a likely mechanism converting latent intracellular bacteria from state of dormancy to a viable state allowing for persistence of an inflammatory pathogen in vascular tissue.
doi:10.1186/1471-2180-8-26
PMCID: PMC2259307  PMID: 18254977
5.  Gingipains of Porphyromonas gingivalis Modulate Leukocyte Adhesion Molecule Expression Induced in Human Endothelial Cells by Ligation of CD99  
Infection and Immunity  2006;74(3):1661-1672.
Porphyromonas gingivalis has been implicated as a key etiologic agent in the pathogenesis of destructive chronic periodontitis. Among virulence factors of this organism are cysteine proteinases, or gingipains, that have the capacity to modulate host inflammatory defenses. Intercellular adhesion molecule expression by vascular endothelium represents a crucial process for leukocyte transendothelial migration into inflamed tissue. Ligation of CD99 on endothelial cells was shown to induce expression of endothelial leukocyte adhesion molecule 1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and major histocompatibility complex class II molecules and to increase adhesion of leukocytes. CD99 ligation was also found to induce nuclear translocation of NF-κB. These results indicate that endothelial cell activation by CD99 ligation may lead to the up-regulation of adhesion molecule expression via NF-κB activation. However, pretreatment of endothelial cells with gingipains caused a dose-dependent reduction of adhesion molecule expression and leukocyte adhesion induced by ligation of CD99 on endothelial cells. The data provide evidence that the gingipains can reduce the functional expression of CD99 on endothelial cells, leading indirectly to the disruption of adhesion molecule expression and of leukocyte recruitment to inflammatory foci.
doi:10.1128/IAI.74.3.1661-1672.2006
PMCID: PMC1418641  PMID: 16495537
6.  Functional Implication of the Hydrolysis of Platelet Endothelial Cell Adhesion Molecule 1 (CD31) by Gingipains of Porphyromonas gingivalis for the Pathology of Periodontal Disease  
Infection and Immunity  2005;73(3):1386-1398.
Periodontitis is a response of highly vascularized tissues to the adjacent microflora of dental plaque. Progressive disease has been related to consortia of anaerobic bacteria, with the gram-negative organism Porphyromonas gingivalis particularly implicated. The gingipains, comprising a group of cysteine proteinases and associated hemagglutinin domains, are major virulence determinants of this organism. As vascular expression of leukocyte adhesion molecules is a critical determinant of tissue response to microbial challenge, the objective of this study was to determine the capacity of gingipains to modulate the expression and function of these receptors. Given the potential multifunctional role of platelet endothelial cell adhesion molecule 1 (PECAM-1) in the vasculature, the effect of gingipains on PECAM-1 expression by endothelial cells was examined. Activated gingipains preferentially down-regulated PECAM-1 expression on endothelial cells compared with vascular cell adhesion molecule 1 and endothelial-leukocyte adhesion molecule 1, but the reduction in PECAM-1 expression was completely inhibited in the presence of the cysteine proteinase inhibitor TLCK (Nα-p-tosyl-l-lysine chloromethyl ketone). Endothelial monolayers treated with activated gingipains demonstrated progressive intercellular gap formation that correlated with reduced intercellular junctional PECAM-1 expression as determined by Western blotting and immunofluorescence microscopy. This was accompanied by enhanced transfer of both albumin and neutrophils across the monolayer. The results suggest that degradation of PECAM-1 by gingipains contributes to increased vascular permeability and neutrophil flux at disease sites.
doi:10.1128/IAI.73.3.1386-1398.2005
PMCID: PMC1064963  PMID: 15731036
7.  Distribution of Porphyromonas gingivalis Biotypes Defined by Alleles of the kgp (Lys-Gingipain) Gene 
Journal of Clinical Microbiology  2004;42(8):3873-3876.
Paired subgingival plaque samples representing the most-diseased and least-diseased sites were collected from 34 adult patients with diagnosed chronic periodontitis. The percentage of Porphyromonas gingivalis relative to the total anaerobic and gram-negative bacterial load at each site was determined by real-time PCR. Based on variations in the noncatalytic C terminus of the Lys-gingipain (Kgp), it was reasoned that DNA sequence variation in the 3′-coding region of the kgp gene might determine functional biotypes. Perusal of the available sequence information in GenBank indicated three such forms of the kgp gene corresponding to P. gingivalis strains HG66, 381, and W83. Analysis of patient samples revealed the presence of a fourth genotype (W83v) that showed duplication of a sequence recognized by the W83 reverse primer. The four biotypes, HG66, 381, W83, and W83v, were present in the study group in the ratio 8:11:6:5, respectively. Each subject was colonized by one predominant biotype, and only three patients were colonized by a trace amount of a second biotype.
doi:10.1128/JCM.42.8.3873-3876.2004
PMCID: PMC497644  PMID: 15297553
8.  Humoral Responses to Porphyromonas gingivalis Gingipain Adhesin Domains in Subjects with Chronic Periodontitis  
Infection and Immunity  2004;72(3):1374-1382.
The gingipains have been implicated in the pathogenicity of Porphyromonas gingivalis, a major etiologic agent of chronic periodontitis. Mature gingipains often present as a membrane-bound glycosylated proteinase-adhesin complex comprising multiple adhesin domains (HA1 to -4) and a catalytic domain. Using recombinant adhesin domains, we were able to show that patients with chronic periodontitis produce significantly more immunoglobulin G reactive with gingipain domains than a corresponding group with healthy periodontium. Titers were predominantly directed toward the carbohydrate epitopes shared between the gingipains and the lipopolysaccharide of P. gingivalis with little recognition of the peptide backbone of the catalytic domains. Distribution of titers to peptide epitopes of the adhesin domains was as follows: HA4 ≈ HA1 > HA3 ≫ HA2. No correlation was observed between markers of disease severity and titers to individual adhesins within the disease group. Posttreatment titers showed no change or a decrease in titers for the majority of patients except for titers to the HA2 domain which showed marked increases in a few responding patients. Since the HA2 domain is important in hemoglobin binding and acquisition of essential porphyrin, boosting titers of antibodies to this domain may have the potential to control the growth of this organism.
doi:10.1128/IAI.72.3.1374-1382.2004
PMCID: PMC356009  PMID: 14977941
9.  Porphyrin-Mediated Cell Surface Heme Capture from Hemoglobin by Porphyromonas gingivalis 
Journal of Bacteriology  2003;185(8):2528-2537.
The porphyrin requirements for growth recovery of Porphyromonas gingivalis in heme-depleted cultures are investigated. In addition to physiologically relevant sources of heme, growth recovery is stimulated by a number of noniron porphyrins. These data demonstrate that, as for Haemophilus influenzae, reliance on captured iron and on exogenous porphyrin is manifest as an absolute growth requirement for heme. A number of outer membrane proteins including some gingipains contain the hemoglobin receptor (HA2) domain. In cell surface extracts, polypeptides derived from HA2-containing proteins predominated in hemoglobin binding. The in vitro porphyrin-binding properties of a recombinant HA2 domain were investigated and found to be iron independent. Porphyrins that differ from protoporphyrin IX in only the vinyl aspect of the tetrapyrrole ring show comparable effects in competing with hemoglobin for HA2 and facilitate growth recovery. For some porphyrins which differ from protoporphyrin IX at both propionic acid side chains, the modification is detrimental in both these assays. Correlations of porphyrin competition and growth recovery imply that the HA2 domain acts as a high-affinity hemophore at the cell surface to capture porphyrin from hemoglobin. While some proteins involved with heme capture bind directly to the iron center, the HA2 domain of P. gingivalis recognizes heme by a mechanism that is solely porphyrin mediated.
doi:10.1128/JB.185.8.2528-2537.2003
PMCID: PMC152631  PMID: 12670977
10.  Modulation of an Interleukin-12 and Gamma Interferon Synergistic Feedback Regulatory Cycle of T-Cell and Monocyte Cocultures by Porphyromonas gingivalis Lipopolysaccharide in the Absence or Presence of Cysteine Proteinases  
Infection and Immunity  2002;70(10):5695-5705.
Interleukin 12 (IL-12) is an efficient inducer and enhancer of gamma interferon (IFN-γ) production by both resting and activated T cells. There is evidence that human monocytes exposed to IFN-γ have enhanced ability to produce IL-12 when stimulated with lipopolysaccharide (LPS). In this study, it was demonstrated that LPS from the oral periodontal pathogen Porphyromonas gingivalis stimulated monocytes primed with IFN-γ to release IL-12, thereby enhancing IFN-γ accumulation in T-cell populations. P. gingivalis LPS was shown to enhance IL-12 induction of IFN-γ in T cells in a manner independent from TNF-α contribution. The levels of T-cell IL-12 receptors were not affected by P. gingivalis LPS and played only a minor role in the magnitude of the IFN-γ response. These data suggest that LPS from P. gingivalis establishes an activation loop with IL-12 and IFN-γ with potential to augment the production of inflammatory cytokines in relation to the immunopathology of periodontitis. We previously reported that the major cysteine proteinases (gingipains) copurifying with LPS in this organism were responsible for reduced IFN-γ accumulation in the presence of IL-12. However, the addition of the gingipains in the presence of LPS resulted in partial restoration of the IFN-γ levels. In the destructive periodontitis lesion, release of gingipains from the outer membrane (OM) of P. gingivalis could lead to the downregulation of Th1 responses, while gingipain associated with LPS in the OM or in OM vesicles released from the organism could have net stimulatory effects.
doi:10.1128/IAI.70.10.5695-5705.2002
PMCID: PMC128344  PMID: 12228299
11.  Hydrolysis of Interleukin-12 by Porphyromonas gingivalis Major Cysteine Proteinases May Affect Local Gamma Interferon Accumulation and the Th1 or Th2 T-Cell Phenotype in Periodontitis 
Infection and Immunity  2001;69(9):5650-5660.
Porphyromonas gingivalis cysteine proteinases (gingipains) have been associated with virulence in destructive periodontitis, a disease process variously considered to represent an unregulated stimulation of either T helper type 1 (Th1)- or Th2-type cells. Critical in maintaining Th1 activity is the response of T lymphocytes to environmental interleukin 12 (IL-12) in the form of up-regulation of gamma interferon (IFN-γ) production. Here we demonstrate that in the presence or absence of serum, gingipains were able to hydrolyze IL-12 and reduce the IL-12-induced IFN-γ production from CD4+ T cells. However, the induction of IL-12 receptors on T cells by gingipains did not correlate with the enhancement of IFN-γ production. The gingipains cleaved IL-12 within the COOH-terminal region of the p40 and p35 subunit chains, which leads to IL-12 inactivity, whereas IL-2 in these assays was not affected. Inactivation of IL-12 by the gingipains could disrupt the cytokine balance or favor Th2 activities in the progression of periodontitis.
doi:10.1128/IAI.69.9.5650-5660.2001
PMCID: PMC98681  PMID: 11500441
12.  Modulation of Major Histocompatibility Complex Protein Expression by Human Gamma Interferon Mediated by Cysteine Proteinase-Adhesin Polyproteins of Porphyromonas gingivalis 
Infection and Immunity  1999;67(6):2986-2995.
Cysteine proteinases have been emphasized in the virulence of Porphyromonas gingivalis in chronic periodontitis. These hydrolases may promote the degradation of extracellular matrix proteins and disrupt components of the immune system. In this study it was shown that purified Arg-gingipain and Lys-gingipain inhibited expression of class II major histocompatibility complex (MHC) proteins in response to the stimulation of endothelial cells with human gamma interferon (IFN-γ). Treatment with the cysteine proteinases resulted in a rapid shift in the apparent molecular size of IFN-γ from 17 to 15 kDa, as shown by Western blot analysis, a response which also occurred in the presence of serum. Further, glycosylated natural IFN-γ from human leukocytes and unglycosylated recombinant IFN-γ from Escherichia coli were both digested by the cysteine proteinases. Immunoblot analysis indicated that cleavage within the carboxyl terminus of recombinant IFN-γ correlated with the loss of induction of MHC class II expression as monitored by analytical flow cytometry. No hydrolysis of MHC class II molecules or human IFN-γ receptor by these proteinases was detected by Western blot analysis. These findings suggest that P. gingivalis cysteine proteinases may alter the cytokine network at the point of infection through the cleavage of IFN-γ. Degradation of IFN-γ could have important consequences for the recruitment and activation of leukocytes and therefore may contribute significantly to the destruction of the periodontal attachment.
PMCID: PMC96610  PMID: 10338509
13.  Porphyrin-Mediated Binding to Hemoglobin by the HA2 Domain of Cysteine Proteinases (Gingipains) and Hemagglutinins from the Periodontal Pathogen Porphyromonas gingivalis 
Journal of Bacteriology  1999;181(12):3784-3791.
Heme binding and uptake are considered fundamental to the growth and virulence of the gram-negative periodontal pathogen Porphyromonas gingivalis. We therefore examined the potential role of the dominant P. gingivalis cysteine proteinases (gingipains) in the acquisition of heme from the environment. A recombinant hemoglobin-binding domain that is conserved between two predominant gingipains (domain HA2) demonstrated tight binding to hemin (Kd = 16 nM), and binding was inhibited by iron-free protoporphyrin IX (Ki = 2.5 μM). Hemoglobin binding to the gingipains and the recombinant HA2 (rHA2) domain (Kd = 2.1 nM) was also inhibited by protoporphyrin IX (Ki = 10 μM), demonstrating an essential interaction between the HA2 domain and the heme moiety in hemoglobin binding. Binding of rHA2 with either hemin, protoporphyrin IX, or hematoporphyrin was abolished by establishing covalent linkage of the protoporphyrin propionic acid side chains to fixed amines, demonstrating specific and directed binding of rHA2 to these protoporphyrins. A monoclonal antibody which recognizes a peptide epitope within the HA2 domain was employed to demonstrate that HA2-associated hemoglobin-binding activity was expressed and released by P. gingivalis cells in a batch culture, in parallel with proteinase activity. Cysteine proteinases from P. gingivalis appear to be multidomain proteins with functions for hemagglutination, erythrocyte lysis, proteolysis, and heme binding, as demonstrated here. Detailed understanding of the biochemical pathways for heme acquisition in P. gingivalis may allow precise targeting of this critical metabolic aspect for periodontal disease prevention.
PMCID: PMC93857  PMID: 10368154

Results 1-13 (13)