Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots 
BMC Plant Biology  2013;13:47.
Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is their source of nutrients throughout their life. A transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that gene expression in the syncytium is different from that of the root with thousands of genes upregulated or downregulated. Among the downregulated genes are many which code for defense-related proteins. One gene which is strongly downregulated codes for the ethylene response transcription factor RAP2.6. The genome of Arabidopsis contains 122 ERF transcription factor genes which are involved in a variety of developmental and stress responses.
Expression of RAP2.6 was studied with RT-PCR and a promoter::GUS line. During normal growth conditions the gene was expressed especially in roots and stems. It was inducible by Pseudomonas syringae but downregulated in syncytia from a very early time point on. Overexpression of the gene enhanced the resistance against H. schachtii which was seen by a lower number of nematodes developing on these plants as well as smaller syncytia and smaller female nematodes. A T-DNA mutant had a reduced RAP2.6 transcript level but this did not further increase the susceptibility against H. schachtii. Neither overexpression lines nor mutants had an effect on P. syringae. Overexpression of RAP2.6 led to an elevated expression of JA-responsive genes during early time points after infection by H. schachtii. Syncytia developing on overexpression lines showed enhanced deposition of callose.
Our results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6. It seems likely that the nematodes use effectors to actively downregulate the expression of this and other defense-related genes to avoid resistance responses of the host plant. Enhanced resistance of RAP2.6 overexpression lines seemed to be due to enhanced callose deposition at syncytia which might interfere with nutrient import into syncytia.
PMCID: PMC3623832  PMID: 23510309
2.  pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage 
BMC Biotechnology  2012;12:37.
The production of transgenic plants, either for the overproduction of the protein of interest, for promoter: reporter lines, or for the downregulation of genes is an important prerequisite in modern plant research but is also very time-consuming.
We have produced additions to the pPZP family of vectors. Vector pPZP500 (derived from pPZP200) is devoid of NotI sites and vector pPZP600 (derived from pPZP500) contains a bacterial kanamycin resistance gene. Vector pMAA-Red contains a Pdf2.1: DsRed marker and a CaMV:: GUS cassette within the T-DNA and is useful for the production of promoter: GUS lines and overexpression lines. The Pdf2.1 promoter is expressed in seeds and syncytia induced by the beet cyst nematode Heterodera schachti in Arabidopsis roots. Transgenic seeds show red fluorescence which can be used for selection and the fluorescence level is indicative of the expression level of the transgene. The advantage is that plants can be grown on soil and that expression of the marker can be directly screened at the seed stage which saves time and resources. Due to the expression of the Pdf2.1: DsRed marker in syncytia, the vector is especially useful for the expression of a gene of interest in syncytia.
The vector pMAA-Red allows for fast and easy production of transgenic Arabidopsis plants with a strong expression level of the gene of interest.
PMCID: PMC3478159  PMID: 22747516
Transient expression; pPZP family vectors; Marker gene; Agroinfiltration; DsRed; Agrobacterium; Arabidopsis transformation
3.  An Arabidopsis ATPase gene involved in nematode-induced syncytium development and abiotic stress responses 
The Plant Journal  2013;74(5):852-866.
The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up-regulated in syncytia as shown by RT-PCR, quantitative RT-PCR, in situ RT-PCR and promoter::GUS lines, encodes an AAA+-type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T-DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T-DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the ‘meiotic clade’ of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1.
PMCID: PMC3712482  PMID: 23480402
Arabidopsis thaliana; Heterodera schachtii; syncytium; AAA+ ATPase; GUS; amiRNA; abiotic stress; DAA1

Results 1-3 (3)