Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Structural answers and persistent questions about how nicotinic receptors work 
The electron diffraction structure of nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata and the X-ray crystallographic structure of acetylcholine binding protein (AChBP) are providing new answers to persistent questions about how nAChRs function as biophysical machines and as participants in cellular and systems physiology. New high-resolution information about nAChR structures might come from advances in crystallography and NMR, from extracellular domain nAChRs as high fidelity models, and from prokaryotic nicotinoid proteins. At the level of biophysics, structures of different nAChRs with different pharmacological profiles and kinetics will help describe how agonists and antagonists bind to orthosteric binding sites, how allosteric modulators affect function by binding outside these sites, how nAChRs control ion flow, and how large cytoplasmic domains affect function. At the level of cellular and systems physiology, structures of nAChRs will help characterize interactions with other cellular components, including lipids and trafficking and signaling proteins, and contribute to understanding the roles of nAChRs in addiction, neurodegeneration, and mental illness. Understanding nAChRs at an atomic level will be important for designing interventions for these pathologies.
PMCID: PMC2430769  PMID: 18508600
Acetylcholine; Addiction; Neurodegeneration; Nicotine; Protein Design; Protein Folding; Protein Structure; Cys-Loop Receptors; Review
2.  Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding 
BMC Biophysics  2011;4:19.
Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites.
Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates.
Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches.
PMCID: PMC3287110  PMID: 22112852
3.  Steady-State Adaptation of Mechanotransduction Modulates the Resting Potential of Auditory Hair Cells, Providing an Assay for Endolymph [Ca2+] 
The auditory hair cell resting potential is critical for proper translation of acoustic signals to the CNS, because it determines their filtering properties, their ability to respond to stimuli of both polarities, and, because the hair cell drives afferent firing rates, the resting potential dictates spontaneous transmitter release. In turtle auditory hair cells, the filtering properties are established by the interactions between BK calcium-activated potassium channels and an L-type calcium channel (electrical resonance). However, both theoretical and in vitro recordings indicate that a third conductance is required to set the resting potential to a point on the ICa and IBK activation curves in which filtering is optimized like that found in vivo. Present data elucidate a novel mechanism, likely universal among hair cells, in which mechanoelectric transduction (MET) and its calcium-dependent adaptation provide the depolarizing current to establish the hair cell resting potential. First, mechanical block of the MET current hyperpolarized the membrane potential, resulting in broadband asymmetrical resonance. Second, altering steady-state adaptation by altering the [Ca2+] bathing the hair bundle changed the MET current at rest, the magnitude of which resulted in membrane potential changes that encompassed the best resonant voltage. The Ca2+ sensitivity of adaptation allowed for the first physiological estimate of endolymphatic Ca2+ near the MET channel (56 ±11μM), a value similar to bulk endolymph levels. These effects of MET current on resting potential were independently confirmed using a theoretical model of electrical resonance that included the steady-state MET conductance.
PMCID: PMC2180014  PMID: 17135414
resting potential; mechanoelectric transduction; auditory hair cells; calcium; adaptation; electrical resonance

Results 1-3 (3)