Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Competitive Interactions of Ligands and Macromolecular Crowders with Maltose Binding Protein 
PLoS ONE  2013;8(10):e74969.
Cellular signaling involves a cascade of recognition events occurring in a complex environment with high concentrations of proteins, polysaccharides, and other macromolecules. The influence of macromolecular crowders on protein binding affinity through hard-core repulsion is well studied, and possible contributions of protein-crowder soft attraction have been implicated recently. Here we present direct evidence for weak association of maltose binding protein (MBP) with a polysaccharide crowder Ficoll, and that this association effectively competes with the binding of the natural ligand, maltose. Titration data over wide ranges of maltose and Ficoll concentrations fit well with a three-state competitive binding model. Broadening of MBP 1H­15N TROSY spectra by the addition of Ficoll indicates weak protein-crowder association, and subsequent recovery of sharp NMR peaks upon addition of maltose indicates that the interactions of the crowder and the ligand with MBP are competitive. We hypothesize that, in the Escherichia coli periplasm, the competitive interactions of polysaccharides and maltose with MBP could allow MBP to shuttle between the peptidoglycan attached to the outer membrane and the ATP-binding cassette transporter in the inner membrane.
PMCID: PMC3790770  PMID: 24124463
2.  Volume Exclusion and Soft Interaction Effects on Protein Stability under Crowded Conditions† 
Biochemistry  2010;49(33):6984-6991.
Most proteins function in nature under crowded conditions, and crowding can change protein properties. Quantification of crowding effects, however, is difficult because solutions containing hundreds of grams per liter of macromolecules often interfere with observing the protein being studied. Models for macromolecular crowding tend to focus on the steric effects of crowders, neglecting potential chemical interactions between the crowder and the test protein. Here, we report the first systematic, quantitative, residue-level study of crowding effects on the equilibrium stability of a globular protein. We used a system comprising poly(vinylpyrrolidone)s (PVPs) of varying molecular weights as crowding agents and chymotrypsin inhibitor 2 (CI2) as a small globular test protein. Stability was quantified with NMR-detected amide 1H exchange. We analyze the data in terms of hard particle exclusion, confinement, and soft interactions. For all crowded conditions, nearly every observed residue experiences a stabilizing effect. The exceptions are residues where stabilities are unchanged. At a PVP concentration of 100 g/L, the data are consistent with theories of hard particle exclusion. At higher concentrations, the data are more consistent with confinement. The data show that the crowder also stabilizes the test protein by weakly binding its native state. We conclude that the role of native-state binding and other soft interactions need to be seriously considered when applying both theory and experiment to studies of macromolecular crowding.
PMCID: PMC2927838  PMID: 20672856
3.  An upper limit for macromolecular crowding effects 
BMC Biophysics  2011;4:13.
Solutions containing high macromolecule concentrations are predicted to affect a number of protein properties compared to those properties in dilute solution. In cells, these macromolecular crowders have a large range of sizes and can occupy 30% or more of the available volume. We chose to study the stability and ps-ns internal dynamics of a globular protein whose radius is ~2 nm when crowded by a synthetic microgel composed of poly(N-isopropylacrylamide-co-acrylic acid) with particle radii of ~300 nm.
Our studies revealed no change in protein rotational or ps-ns backbone dynamics and only mild (~0.5 kcal/mol at 37°C, pH 5.4) stabilization at a volume occupancy of 70%, which approaches the occupancy of closely packing spheres. The lack of change in rotational dynamics indicates the absence of strong crowder-protein interactions.
Our observations are explained by the large size discrepancy between the protein and crowders and by the internal structure of the microgels, which provide interstitial spaces and internal pores where the protein can exist in a dilute solution-like environment. In summary, microgels that interact weakly with proteins do not strongly influence protein dynamics or stability because these large microgels constitute an upper size limit on crowding effects.
PMCID: PMC3120801  PMID: 21627822
4.  Protein NMR under Physiological Conditions † 
Biochemistry  2009;48(2):226-234.
Almost everything we know about protein biophysics comes from studies on purified proteins in dilute solution. Most proteins, however, operate inside cells where the concentration of macromolecules can be >300 mg per mL. Although reductionism-based approaches have served protein science well for over a century, biochemists now have the tools to study proteins under these more physiologically-relevant conditions. We review a part of this burgeoning post-reductionist landscape by focusing on high-resolution protein NMR spectroscopy, the only method that provides atomic-level information over an entire protein under the crowded conditions found in cells.
PMCID: PMC2645539  PMID: 19113834

Results 1-4 (4)