Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  APM_GUI: analyzing particle movement on the cell membrane and determining confinement 
BMC Biophysics  2012;5:4.
Single-particle tracking is a powerful tool for tracking individual particles with high precision. It provides useful information that allows the study of diffusion properties as well as the dynamics of movement. Changes in particle movement behavior, such as transitions between Brownian motion and temporary confinement, can reveal interesting biophysical interactions. Although useful applications exist to determine the paths of individual particles, only a few software implementations are available to analyze these data, and these implementations are generally not user-friendly and do not have a graphical interface,.
Here, we present APM_GUI (Analyzing Particle Movement), which is a MatLab-implemented application with a Graphical User Interface. This user-friendly application detects confined movement considering non-random confinement when a particle remains in a region longer than a Brownian diffusant would remain. In addition, APM_GUI exports the results, which allows users to analyze this information using software that they are familiar with.
APM_GUI provides an open-source tool that quantifies diffusion coefficients and determines whether trajectories have non-random confinements. It also offers a simple and user-friendly tool that can be used by individuals without programming skills.
PMCID: PMC3337278  PMID: 22348508
2.  Acid-Inducible Transcription of the Operon Encoding the Citrate Lyase Complex of Lactococcus lactis Biovar diacetylactis CRL264 
Journal of Bacteriology  2004;186(17):5649-5660.
Although Lactococcus is one of the most extensively studied lactic acid bacteria and is the paradigm for biochemical studies of citrate metabolism, little information is available on the regulation of the citrate lyase complex. In order to fill this gap, we characterized the genes encoding the subunits of the citrate lyase of Lactococcus lactis CRL264, which are located on an 11.4-kb chromosomal DNA region. Nucleotide sequence analysis revealed a cluster of eight genes in a new type of genetic organization. The citM-citCDEFXG operon (cit operon) is transcribed as a single polycistronic mRNA of 8.6 kb. This operon carries a gene encoding a malic enzyme (CitM, a putative oxaloacetate decarboxylase), the structural genes coding for the citrate lyase subunits (citD, citE, and citF), and the accessory genes required for the synthesis of an active citrate lyase complex (citC, citX, and citG). We have found that the cit operon is induced by natural acidification of the medium during cell growth or by a shift to media buffered at acidic pHs. Between the citM and citC genes is a divergent open reading frame whose expression was also increased at acidic pH, which was designated citI. This inducible response to acid stress takes place at the transcriptional level and correlates with increased activity of citrate lyase. It is suggested that coordinated induction of the citrate transporter, CitP, and citrate lyase by acid stress provides a mechanism to make the cells (more) resistant to the inhibitory effects of the fermentation product (lactate) that accumulates under these conditions.
PMCID: PMC516808  PMID: 15317769

Results 1-2 (2)