Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Detection and differentiation of bacterial spores in a mineral matrix by Fourier transform infrared spectroscopy (FTIR) and chemometrical data treatment 
BMC Biophysics  2011;4:14.
Fourier transform infrared spectroscopy (FTIR) has been used as analytical tool in chemistry for many years. In addition, FTIR can also be applied as a rapid and non-invasive method to detect and identify microorganisms. The specific and fingerprint-like spectra allow - under optimal conditions - discrimination down to the species level. The aim of this study was to develop a fast and reproducible non-molecular method to differentiate pure samples of Bacillus spores originating from different species as well as to identify spores in a simple matrix, such as the clay mineral, bentonite.
We investigated spores from pure cultures of seven different Bacillus species by FTIR in reflection or transmission mode followed by chemometrical data treatment. All species investigated (B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B. subtilis, B. thuringiensis) are typical aerobic soil-borne spore formers. Additionally, a solid matrix (bentonite) and mixtures of benonite with spores of B. megaterium at various wt/wt ratios were included in the study. Both hierarchical cluster analysis and principal component analysis of the spectra along with multidimensional scaling allowed the discrimination of different species and spore-matrix-mixtures.
Our results show that FTIR spectroscopy is a fast method for species-level discrimination of Bacillus spores. Spores were still detectable in the presence of the clay mineral bentonite. Even a tenfold excess of bentonite (corresponding to 2.1 × 1010 colony forming units per gram of mineral matrix) still resulted in an unambiguous identification of B. megaterium spores.
PMCID: PMC3155104  PMID: 21756333
Bacillus spores; infrared spectroscopy; FTIR; clay minerals; bentonite; mineral matrix
2.  Detection of Bacterial Endospores in Soil by Terbium Fluorescence 
Spore formation is a survival mechanism of microorganisms when facing unfavorable environmental conditions resulting in “dormant” states. We investigated the occurrence of bacterial endospores in soils from various locations including grasslands (pasture, meadow), allotment gardens, and forests, as well as fluvial sediments. Bacterial spores are characterized by their high content of dipicolinic acid (DPA). In the presence of terbium, DPA forms a complex showing a distinctive photoluminescence spectrum. DPA was released from soil by microwaving or autoclaving. The addition of aluminium chloride reduced signal quenching by interfering compounds such as phosphate. The highest spore content (up to 109 spores per gram of dry soil) was found in grassland soils. Spore content is related to soil type, to soil depth, and to soil carbon-to-nitrogen ratio. Our study might provide a basis for the detection of “hot spots” of bacterial spores in soil.
PMCID: PMC3132637  PMID: 21754939

Results 1-2 (2)