Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Identification of Annexin A1 protein expression in human gastric adenocarcinoma using proteomics and tissue microarray 
AIM: To study the differential expression of Annexin A1 (ANXA1) protein in human gastric adenocarcinoma. This study was also designed to analyze the relationship between ANXA1 expression and the clinicopathological parameters of gastric carcinoma.
METHODS: Purified gastric adenocarcinoma cells (GAC) and normal gastric epithelial cells (NGEC) were obtained from 15 patients with gastric cancer by laser capture microdissection. All of the peptide specimens were labeled as 18O/16O after trypsin digestion. Differential protein expressions were quantitatively identified between GAC and NGEC by nanoliter-reverse-phase liquid chromatography-mass/mass spectrometry (nano-RPLC-MS/MS). The expressions of ANXA1 in GAC and NGEC were verified by western blot analysis. The tissue microarray containing the expressed ANXA1 in 75 pairs of gastric carcinoma and paracarcinoma specimens was detected by immunohistochemistry (IHC). The relationship between ANXA1 expression and clinicopathological parametes of gastric carcinoma was analyzed.
RESULTS: A total of 78 differential proteins were identified. Western blotting revealed that ANXA1 expression was significantly upregulated in GAC (2.17/1, P < 0.01). IHC results showed the correlations between ANXA1 protein expression and the clinicopathological parameters, including invasive depth (T stage), lymph node metastasis (N stage), distant metastasis (M stage) and tumour-lymph node metastasis stage (P < 0.01). However, the correlations between ANXA1 protein expression and the remaining clinicopathological parameters, including sex, age, histological differentiation and the size of tumour were not found (P > 0.05).
CONCLUSION: The upregulated ANXA1 expression may be associated with carcinogenesis, progression, invasion and metastasis of GAC. This protein could be considered as a biomarker of clinical prognostic prediction and targeted therapy of GAC.
PMCID: PMC3837281  PMID: 24282368
Gastric cancer; Annexin A1 protein; Proteomics; Tissue microarray; Immunohistochemistry
2.  Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies 
Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC), but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers.
PMCID: PMC2898104  PMID: 20631820
Notch-1; target therapy; tissue microarray; immunohistochemistry
3.  A Sexually Dimorphic Corolla Appendage Affects Pollen Removal and Floral Longevity in Gynodioecious Cyananthus delavayi (Campanulaceae) 
PLoS ONE  2015;10(1):e0117149.
The floral traits of bisexual flowers may evolve in response to selection on both male and female functions, but the relative importance of selection associated with each of these two aspects is poorly resolved. Sexually dimorphic traits in plants with unisexual flowers may reflect gender-specific selection, providing opportunities for gaining an increased understanding of the evolution of specific floral traits. We examined sexually dimorphic patterns of floral traits in perfect and female flowers of the gynodioecious species Cyananthus delavayi. A special corolla appendage, the throat hair, was investigated experimentally to examine its influences on male and female function. We found that perfect flowers have larger corollas and much longer throat hairs than female flowers, while female ones have much exerted stigmas. The presence of throat hairs prolonged the duration of pollen presentation by restricting the amount of pollen removed by pollen-collecting bees during each visit. Floral longevity was negatively related to the rate of pollen removal. When pollen removal rate was limited in perfect flowers, the duration of the female phases diminished with the increased male phase duration. There was a weak negative correlation between throat hair length and seed number per fruit in female flowers, but this correlation was not significant in perfect flowers. These results suggest that throat hairs may enhance male function in terms of prolonged pollen presentation. However, throat hairs have no obvious effect on female function in terms of seed number per fruit. The marked sexual dimorphism of this corolla appendage in C. delavayi is likely to have evolved and been maintained by gender-specific selection.
PMCID: PMC4300179  PMID: 25603479
4.  Floral closure induced by pollination in gynodioecious Cyananthus delavayi (Campanulaceae): effects of pollen load and type, floral morph and fitness consequences 
Annals of Botany  2011;108(7):1257-1268.
Background and aims
Pollination-induced floral changes, which have been widely documented in flowering plants, have been assumed to enhance the plant's reproductive success. However, our understanding of the causes and consequences of these changes is still limited. Using an alpine gynodioecious species, Cyananthus delavayi, we investigated the factors affecting floral closure and estimated the fitness consequences of floral closure.
The timings of floral closure and fertilization were determined. The effects of pollen load, pollen type (cross- or self-pollen) and floral morph (female or perfect flower) on the occurrence of floral closure were examined. Ovule fertilization and seed production were examined to investigate the causes and consequences of floral closure. Flowers were manipulated to prevent closing to detect potential benefits for female fitness.
Key Results
Floral closure, which could be induced by a very low pollen load, occurred within 4–7 h after pollination, immediately following fertilization. The proportion of closed flowers was influenced by pollen load and floral morph, but not by pollen type. Floral closure was more likely to occur in flowers with a higher proportion of fertilized ovules, but there was no significant difference in seed production between closed and open flowers. Those flowers in which closure was induced by natural pollination had low fruit set and seed production. Additionally, seed production was not influenced by closing-prevented manipulation when sufficient pollen deposition was received.
The occurrence of floral closure may be determined by the proportion of fertilized ovules, but this response can be too sensitive to ensure sufficient pollen deposition and can, to some extent, lead to a cost in female fitness. These results implied that the control of floral receptivity by the recipient flowers does not lead to an optimal fitness gain in C. delavayi.
PMCID: PMC3197452  PMID: 21900256
Cyananthus delavayi; female fitness; floral closure; floral longevity; gynodioecy; pollination; post-pollination phenomenon; sexual conflict
5.  From taxonomic literature to cybertaxonomic content 
BMC Biology  2012;10:87.
PMCID: PMC3485131  PMID: 23114078
cybertaxonomy; open access publishing; semantic content; XML markup
6.  2-(4-Fluoro­phen­yl)quinoxaline 
In the title compound, C14H9FN2, the dihedral angle between the benzene ring and the quinoxaline ring system is 22.2 (3)°. Any aromatic π–π stacking in the crystal must be very weak, with a minimum centroid–centroid separation of 3.995 (2) Å.
PMCID: PMC3379358  PMID: 22719556
7.  Functional implications of the staminal lever mechanism in Salvia cyclostegia (Lamiaceae) 
Annals of Botany  2011;107(4):621-628.
Background and Aims
Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.
Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.
Key Results
Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.
Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.
PMCID: PMC3064543  PMID: 21292677
Adaptation; Bombus personatus; experimental flower manipulation; floral constancy; floral design; foraging behaviour; geitonogamy; Salvia
8.  Methyl 4-(5-meth­oxy-1H-indol-3-yl)benzoate 
In the title compound, C17H15NO3, the dihedral angle between the benzene ring and the indole ring system is 22.5 (3)°. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯O inter­actions.
PMCID: PMC3254479  PMID: 22259421
9.  3-(4-Meth­oxy­phen­yl)pyrido[2,3-b]pyrazine 
In the title mol­ecule, C14H11N3O, the benzene ring is twisted by 14.0 (2)° from the plane through the fused ring system. In the crystal, π–π inter­actions [centroid–centroid distances = 3.609 (1), 3.639 (1) and 3.735 (1) Å] form stacks of mol­ecules propagating along the b axis. The crystal packing is further stabilized by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.
PMCID: PMC2983270  PMID: 21587621
10.  Efficacy of Multivalent Adenovirus-Based Vaccine against Simian Immunodeficiency Virus Challenge ▿  
Journal of Virology  2009;84(6):2996-3003.
The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01+/B*17− Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01+ cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env ≈ Gag/Pol > Gag ≈ Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.
PMCID: PMC2826028  PMID: 20042509
11.  Autonomous Selfing Provides Reproductive Assurance in an Alpine Ginger Roscoea schneideriana (Zingiberaceae) 
Annals of Botany  2008;102(4):531-538.
Background and Aims
Reproductive assurance, the ability to produce seeds when pollinators or mates are scarce, is thought to be the major advantage of selfing in flowering plants. However, few studies have performed a direct cost–benefit analysis of the selective advantage of selfing, particularly given a long-term perspective among populations or across several flowering seasons within population. This study examined the fertility consequences of autonomous selfing in Roscoea schneideriana (Zingiberaceae), a small perennial Himalayan ginger typically found in habitats at around 3000 m a.s.l.
The floral biology of R. schneideriana was studied in natural populations; the capacity for autonomous selfing was estimated using pollinator exclusion experiments; the timing of selfing was quantified by anther removal at different times during flowering; whether autonomous selfing increases seed production was tested by emasculating flowers; and the magnitude of inbreeding depression was estimated by comparing relative performance of progeny from self- and cross-pollinations. Pollinator observations were also conducted in the natural populations.
Key Results
The hooked stigmas of most flowers curl towards the anther and can contact pollen grains at an early stage of anthesis. Flowers with potential pollinators excluded set of as many seeds per fruit as hand-selfed and opened flowers. Autonomous selfing mostly occurs within 2 d of anthesis and can increase seed production by an average of 84 % in four populations during the flowering seasons of 2005–2007. Visits by effective pollinators were extremely rare. The cumulative inbreeding depression of R. schneideriana was 0·226.
Autonomous selfing in R. schneideriana is achieved by stigmas curling towards the anthers early in flowering. It is suggested that under the poor pollination conditions, autonomous selfing has been selected for in this alpine ginger because it provides substantial reproductive assurance with very low costs.
PMCID: PMC2701783  PMID: 18682439
Zingiberaceae; Roscoea; autonomous self-pollination; reproductive assurance; inbreeding depression; pollinator failure; Himalayan species
12.  Understanding the Impact of Root Morphology on Overturning Mechanisms: A Modelling Approach 
Annals of Botany  2007;101(8):1267-1280.
Background and Aims
The Finite Element Method (FEM) has been used in recent years to simulate overturning processes in trees. This study aimed at using FEM to determine the role of individual roots in tree anchorage with regard to different rooting patterns, and to estimate stress distribution in the soil and roots during overturning.
The FEM was used to carry out 2-D simulations of tree uprooting in saturated soft clay and loamy sand-like soil. The anchorage model consisted of a root system embedded in a soil block. Two root patterns were used and individual roots removed to determine their contribution to anchorage.
Key Results
In clay-like soil the size of the root–soil plate formed during overturning was defined by the longest roots. Consequently, all other roots localized within this plate had no influence on anchorage strength. In sand-like soil, removing individual root elements altered anchorage resistance. This result was due to a modification of the shape and size of the root–soil plate, as well as the location of the rotation axis. The tap root and deeper roots had more influence on overturning resistance in sand-like soil compared with clay-like soil. Mechanical stresses were higher in the most superficial roots and also in leeward roots in sand-like soil. The relative difference in stresses between the upper and lower sides of lateral roots was sensitive to root insertion angle. Assuming that root eccentricity is a response to mechanical stresses, these results explain why eccentricity differs depending on root architecture.
A simple 2-D Finite Element model was developed to better understand the mechanisms involved during tree overturning. It has been shown how root system morphology and soil mechanical properties can modify the shape of the root plate slip surface as well as the position of the rotation axis, which are major components of tree anchorage.
PMCID: PMC2710277  PMID: 17942593
Acclimative growth; anchorage; biomechanics; tree uprooting; rotation axis; root architecture; root eccentricity; secondary growth; von Mises stresses
13.  Attenuation of Simian Immunodeficiency Virus SIVmac239 Infection by Prophylactic Immunization with DNA and Recombinant Adenoviral Vaccine Vectors Expressing Gag 
Journal of Virology  2005;79(24):15547-15555.
The prophylactic efficacy of DNA and replication-incompetent adenovirus serotype 5 (Ad5) vaccine vectors expressing simian immunodeficiency virus (SIV) Gag was examined in rhesus macaques using an SIVmac239 challenge. Cohorts of either Mamu-A*01(+) or Mamu-A*01(−) macaques were immunized with a DNA prime-Ad5 boost regimen; for comparison, a third cohort consisting of Mamu-A*01(+) monkeys was immunized using the Ad5 vector alone for both prime and boost. All animals, along with unvaccinated control cohorts of Mamu-A*01(+) and Mamu-A*01(−) macaques, were challenged intrarectally with SIVmac239. Viral loads were measured in both peripheral and lymphoid compartments. Only the DNA prime-Ad5-boosted Mamu-A*01(+) cohort exhibited a notable reduction in peak plasma viral load (sevenfold) as well as in early set-point viral burdens in both plasma and lymphoid tissues (10-fold) relative to those observed in the control monkeys sharing the same Mamu-A*01 allele. The degree of control in each animal correlated with the levels of Gag-specific immunity before virus challenge. However, virus control was short-lived, and indications of viral escape were evident as early as 6 months postinfection. The implications of these results in vaccine design and clinical testing are discussed.
PMCID: PMC1315991  PMID: 16306625
14.  Vectored Gag and Env but Not Tat Show Efficacy against Simian-Human Immunodeficiency Virus 89.6P Challenge in Mamu-A*01-Negative Rhesus Monkeys 
Journal of Virology  2005;79(19):12321-12331.
Simian-human immunodeficiency virus (SHIV) challenge studies in rhesus macaques were conducted to evaluate the efficacy of adenovirus-based vaccines in the context of different major histocompatibility complex class I genetic backgrounds and different vaccine compositions. Mamu-A*01 allele-negative rhesus monkeys were immunized with one of the following vaccine constructs: (i) replication-defective recombinant adenovirus type 5 (Ad5) expressing human immunodeficiency virus type 1 (HIV-1) Tat (Ad5/HIVTat); (ii) Ad5 vector expressing simian immunodeficiency virus (SIV) Gag (Ad5/SIVGag); (iii) Ad5 vector expressing the truncated HIV-1jrfl Env, gp140 (Ad5/gp140_jrfl); (iv) Ad5 vector expressing the SHIV-89.6P gp140 (Ad5/gp140_89.6P); or (v) the combination of Ad5/SIVGag and Ad5/gp140_jrfl. Following intravenous challenge with SHIV-89.6P, only those cohorts that received vaccines expressing Gag or Env exhibited an attenuation of the acute viremia and associated CD4-cell lymphopenia. While no prechallenge neutralizing antibody titers were detectable in either Ad5/gp140-vaccinated group, an accelerated neutralizing antibody response was observed in the Ad5/gp140_89.6P-vaccinated group upon viral challenge. The set-point viral loads in the Ad5/SIVGag- and Ad5/gp140_jrfl-vaccinated groups were associated with the overall strength of the induced cellular immune responses. To examine the contribution of Mamu-A*01 allele in vaccine efficacy against SHIV-89.6P challenge, Mamu-A*01-positive monkeys were immunized with Ad5/SIVGag. Vaccine-mediated protection was significantly more pronounced in the Mamu-A*01-positive monkeys than in Mamu-A*01-negative monkeys, suggesting the strong contributions of T-cell epitopes restricted by the Mamu-A*01 molecule. The implications of these results in the development of an HIV-1 vaccine will be discussed.
PMCID: PMC1211517  PMID: 16160159
15.  Mamu-A∗01 Allele-Mediated Attenuation of Disease Progression in Simian-Human Immunodeficiency Virus Infection 
Journal of Virology  2002;76(24):12845-12854.
Expression of several major histocompatibility complex (MHC) class I alleles is associated with a protective effect against disease progression in both human immunodeficiency virus type 1 and simian immunodeficiency virus infection. To understand the mechanism underlying this effect, we investigated the expression of the MHC class I allele Mamu-A*01 in simian-human immunodeficiency virus (SHIV) infection, one of the major models for evaluation of AIDS vaccine candidates. We found that disease progression was significantly delayed in Mamu-A∗01-positive rhesus monkeys infected with the highly pathogenic SHIV 89.6P. The delay corresponded not only to a noted Mamu-A∗01-restricted dominant cytotoxic T-lymphocyte (CTL) response but also to a lower viral load in lymph nodes (LN) and, importantly, to minimal destruction of LN structure during early infection. In contrast, Mamu-A∗01-negative monkeys exhibited massive destruction of LN structure with accompanying rapid disease progression. These data indicate that MHC class I allele-restricted CTL responses may play an important role in preservation of lymphoid tissue structure, thereby resulting in attenuation of disease progression in immunodeficiency virus infection.
PMCID: PMC136722  PMID: 12438610

Results 1-15 (15)