Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Phylogenetic Signal Dissection Identifies the Root of Starfishes 
PLoS ONE  2015;10(5):e0123331.
Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors - Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution – have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented.
PMCID: PMC4425436  PMID: 25955729
2.  Revised Timeline and Distribution of the Earliest Diverged Human Maternal Lineages in Southern Africa 
PLoS ONE  2015;10(3):e0121223.
The oldest extant human maternal lineages include mitochondrial haplogroups L0d and L0k found in the southern African click-speaking forager peoples broadly classified as Khoesan. Profiling these early mitochondrial lineages allows for better understanding of modern human evolution. In this study, we profile 77 new early-diverged complete mitochondrial genomes and sub-classify another 105 L0d/L0k individuals from southern Africa. We use this data to refine basal phylogenetic divergence, coalescence times and Khoesan prehistory. Our results confirm L0d as the earliest diverged lineage (∼172 kya, 95%CI: 149–199 kya), followed by L0k (∼159 kya, 95%CI: 136–183 kya) and a new lineage we name L0g (∼94 kya, 95%CI: 72–116 kya). We identify two new L0d1 subclades we name L0d1d and L0d1c4/L0d1e, and estimate L0d2 and L0d1 divergence at ∼93 kya (95%CI:76–112 kya). We concur the earliest emerging L0d1’2 sublineage L0d1b (∼49 kya, 95%CI:37–58 kya) is widely distributed across southern Africa. Concomitantly, we find the most recent sublineage L0d2a (∼17 kya, 95%CI:10–27 kya) to be equally common. While we agree that lineages L0d1c and L0k1a are restricted to contemporary inland Khoesan populations, our observed predominance of L0d2a and L0d1a in non-Khoesan populations suggests a once independent coastal Khoesan prehistory. The distribution of early-diverged human maternal lineages within contemporary southern Africans suggests a rich history of human existence prior to any archaeological evidence of migration into the region. For the first time, we provide a genetic-based evidence for significant modern human evolution in southern Africa at the time of the Last Glacial Maximum at between ∼21–17 kya, coinciding with the emergence of major lineages L0d1a, L0d2b, L0d2d and L0d2a.
PMCID: PMC4373779  PMID: 25807545
3.  First Ancient Mitochondrial Human Genome from a Prepastoralist Southern African 
Genome Biology and Evolution  2014;6(10):2647-2653.
The oldest contemporary human mitochondrial lineages arose in Africa. The earliest divergent extant maternal offshoot, namely haplogroup L0d, is represented by click-speaking forager peoples of southern Africa. Broadly defined as Khoesan, contemporary Khoesan are today largely restricted to the semidesert regions of Namibia and Botswana, whereas archeological, historical, and genetic evidence promotes a once broader southerly dispersal of click-speaking peoples including southward migrating pastoralists and indigenous marine-foragers. No genetic data have been recovered from the indigenous peoples that once sustained life along the southern coastal waters of Africa prepastoral arrival. In this study we generate a complete mitochondrial genome from a 2,330-year-old male skeleton, confirmed through osteological and archeological analysis as practicing a marine-based forager existence. The ancient mtDNA represents a new L0d2c lineage (L0d2c1c) that is today, unlike its Khoe-language based sister-clades (L0d2c1a and L0d2c1b) most closely related to contemporary indigenous San-speakers (specifically Ju). Providing the first genomic evidence that prepastoral Southern African marine foragers carried the earliest diverged maternal modern human lineages, this study emphasizes the significance of Southern African archeological remains in defining early modern human origins.
PMCID: PMC4224329  PMID: 25212860
ancient DNA; mitochondrial genome; Khoesan; southern Africa; marine foragers; archeological skeletons
4.  Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan 
Echinoderms are unique among animal phyla in having a pentaradial body plan, and their fossil record provides critical data on how this novel organization came about by revealing intermediate stages. Here, we report a spiral-plated animal from the early Cambrian of Morocco that is the most primitive pentaradial echinoderm yet discovered. It is intermediate between helicoplacoids (a bizarre group of spiral-bodied echinoderms) and crown-group pentaradiate echinoderms. By filling an important gap, this fossil reveals the common pattern that underpins the body plans of the two major echinoderm clades (pelmatozoans and eleutherozoans), showing that differential growth played an important role in their divergence. It also adds to the striking disparity of novel body plans appearing in the Cambrian explosion.
PMCID: PMC3712455  PMID: 23804624
phylogeny; body plans; Echinodermata; evolution; Cambrian explosion
5.  Phanerozoic marine diversity: rock record modelling provides an independent test of large-scale trends 
Sampling bias created by a heterogeneous rock record can seriously distort estimates of marine diversity and makes a direct reading of the fossil record unreliable. Here we compare two independent estimates of Phanerozoic marine diversity that explicitly take account of variation in sampling—a subsampling approach that standardizes for differences in fossil collection intensity, and a rock area modelling approach that takes account of differences in rock availability. Using the fossil records of North America and Western Europe, we demonstrate that a modelling approach applied to the combined data produces results that are significantly correlated with those derived from subsampling. This concordance between independent approaches argues strongly for the reality of the large-scale trends in diversity we identify from both approaches.
PMCID: PMC3479812  PMID: 22951734
diversity; evolution; sampling bias; rock record; invertebrates; fossil record
6.  Spatial Bias in the Marine Fossil Record 
PLoS ONE  2013;8(10):e74470.
Inference of past and present global biodiversity requires enough global data to distinguish biological pattern from sampling artifact. Pertinently, many studies have exposed correlated relationships between richness and sampling in the fossil record, and methods to circumvent these biases have been proposed. Yet, these studies often ignore paleobiogeography, which is undeniably a critical component of ancient global diversity. Alarmingly, our global analysis of 481,613 marine fossils spread throughout the Phanerozoic reveals that where localities are and how intensively they have been sampled almost completely determines empirical spatial patterns of richness, suggesting no separation of biological pattern from sampling pattern. To overcome this, we analyze diversity using occurrence records drawn from two discrete paleolatitudinal bands which cover the bulk of the fossil data. After correcting the data for sampling bias, we find that these two bands have similar patterns of richness despite markedly different spatial coverage. Our findings suggest that i) long-term diversity trends result from large-scale tectonic evolution of the planet, ii) short-term diversity trends are region-specific, and iii) paleodiversity studies must constrain their analyses to well-sampled regions to uncover patterns not driven by sampling.
PMCID: PMC3813679  PMID: 24204570
7.  The diversity and biogeography of the Coleoptera of Churchill: insights from DNA barcoding 
BMC Ecology  2013;13:40.
Coleoptera is the most diverse order of insects (>300,000 described species), but its richness diminishes at increasing latitudes (e.g., ca. 7400 species recorded in Canada), particularly of phytophagous and detritivorous species. However, incomplete sampling of northern habitats and a lack of taxonomic study of some families limits our understanding of biodiversity patterns in the Coleoptera. We conducted an intensive biodiversity survey from 2006–2010 at Churchill, Manitoba, Canada in order to quantify beetle species diversity in this model region, and to prepare a barcode library of beetles for sub-arctic biodiversity and ecological research. We employed DNA barcoding to provide estimates of provisional species diversity, including for families currently lacking taxonomic expertise, and to examine the guild structure, habitat distribution, and biogeography of beetles in the Churchill region.
We obtained DNA barcodes from 3203 specimens representing 302 species or provisional species (the latter quantitatively defined on the basis of Molecular Operational Taxonomic Units, MOTUs) in 31 families of Coleoptera. Of the 184 taxa identified to the level of a Linnaean species name, 170 (92.4%) corresponded to a single MOTU, four (2.2%) represented closely related sibling species pairs within a single MOTU, and ten (5.4%) were divided into two or more MOTUs suggestive of cryptic species. The most diverse families were the Dytiscidae (63 spp.), Staphylinidae (54 spp.), and Carabidae (52 spp.), although the accumulation curve for Staphylinidae suggests that considerable additional diversity remains to be sampled in this family. Most of the species present are predatory, with phytophagous, mycophagous, and saprophagous guilds being represented by fewer species. Most named species of Carabidae and Dytiscidae showed a significant bias toward open habitats (wet or dry). Forest habitats, particularly dry boreal forest, although limited in extent in the region, were undersampled.
We present an updated species list for this region as well as a species-level DNA barcode reference library. This resource will facilitate future work, such as biomonitoring and the study of the ecology and distribution of larvae.
PMCID: PMC3819705  PMID: 24164967
Barcode library; Barcoding biotas; Boreal-arctic transition; COI; Cytochrome c oxidase subunit I; DNA barcoding; Freshwater; Terrestrial; Subarctic forest
8.  A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses 
PLoS ONE  2013;8(6):e66245.
Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates.
PMCID: PMC3673923  PMID: 23755303
9.  Modelling the past: new generation approaches to understanding biological patterns in the fossil record 
Biology Letters  2011;8(1):112-114.
The history of life on this planet is gleaned from analysing how fossils are distributed through time and space. While these patterns are now rather securely known, at least for well-studied parts of the world, their interpretation remains far from simple. Fossils preserve only partial data from which to reconstruct their biology and the geological record is incomplete and biased, so that taxonomic ranges and palaeocommunity structure are imperfectly known. To better understand the often highly complex deep-time processes that gave rise to the empirical fossil record, palaeontologists have turned to modelling the past. Here, we summarize a series of 11 papers that showcase where modelling the past is being applied to advance our understanding across a wide spectrum of current palaeontological endeavours.
PMCID: PMC3259986  PMID: 22114324
palaeontology; modelling; evolutionary history; sampling biases
10.  Cambrian problematica and the diversification of deuterostomes 
BMC Biology  2012;10:79.
Vetulicolians are an enigmatic group of Cambrian organisms that have been affiliated at various times with arthropods, lobopodians, kinorhynchs and deuterostomes. New evidence on the structure of the lateral pores of vetulicolians published in BMC Biology strengthens the view that they may be total group deuterostomes, but unfortunately sheds no new light on early deuterostome evolution.
See research article
PMCID: PMC3462677  PMID: 23031503
11.  A Common Origin for the Bacterial Toxin-Antitoxin Systems parD and ccd, Suggested by Analyses of Toxin/Target and Toxin/Antitoxin Interactions 
PLoS ONE  2012;7(9):e46499.
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.
PMCID: PMC3460896  PMID: 23029540
12.  Plated Cambrian Bilaterians Reveal the Earliest Stages of Echinoderm Evolution 
PLoS ONE  2012;7(6):e38296.
Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders.
PMCID: PMC3368939  PMID: 22701623
13.  Family-group names in Coleoptera (Insecta) 
ZooKeys  2011;1-972.
We synthesize data on all known extant and fossil Coleoptera family-group names for the first time. A catalogue of 4887 family-group names (124 fossil, 4763 extant) based on 4707 distinct genera in Coleoptera is given. A total of 4492 names are available, 183 of which are permanently invalid because they are based on a preoccupied or a suppressed type genus. Names are listed in a classification framework. We recognize as valid 24 superfamilies, 211 families, 541 subfamilies, 1663 tribes and 740 subtribes. For each name, the original spelling, author, year of publication, page number, correct stem and type genus are included. The original spelling and availability of each name were checked from primary literature. A list of necessary changes due to Priority and Homonymy problems, and actions taken, is given. Current usage of names was conserved, whenever possible, to promote stability of the classification.
New synonymies (family-group names followed by genus-group names): Agronomina Gistel, 1848 syn. nov. of Amarina Zimmermann, 1832 (Carabidae), Hylepnigalioini Gistel, 1856 syn. nov. of Melandryini Leach, 1815 (Melandryidae), Polycystophoridae Gistel, 1856 syn. nov. of Malachiinae Fleming, 1821 (Melyridae), Sclerasteinae Gistel, 1856 syn. nov. of Ptilininae Shuckard, 1839 (Ptinidae), Phloeonomini Ádám, 2001 syn. nov. of Omaliini MacLeay, 1825 (Staphylinidae), Sepedophilini Ádám, 2001 syn. nov. of Tachyporini MacLeay, 1825 (Staphylinidae), Phibalini Gistel, 1856 syn. nov. of Cteniopodini Solier, 1835 (Tenebrionidae); Agronoma Gistel 1848 (type species Carabus familiaris Duftschmid, 1812, designated herein) syn. nov. of Amara Bonelli, 1810 (Carabidae), Hylepnigalio Gistel, 1856 (type species Chrysomela caraboides Linnaeus, 1760, by monotypy) syn. nov. of Melandrya Fabricius, 1801 (Melandryidae), Polycystophorus Gistel, 1856 (type species Cantharis aeneus Linnaeus, 1758, designated herein) syn. nov. of Malachius Fabricius, 1775 (Melyridae), Sclerastes Gistel, 1856 (type species Ptilinus costatus Gyllenhal, 1827, designated herein) syn. nov. of Ptilinus Geoffroy, 1762 (Ptinidae), Paniscus Gistel, 1848 (type species Scarabaeus fasciatus Linnaeus, 1758, designated herein) syn. nov. of Trichius Fabricius, 1775 (Scarabaeidae), Phibalus Gistel, 1856 (type species Chrysomela pubescens Linnaeus, 1758, by monotypy) syn. nov. of Omophlus Dejean, 1834 (Tenebrionidae). The following new replacement name is proposed: Gompeliina Bouchard, 2011 nom. nov. for Olotelina Báguena Corella, 1948 (Aderidae).
Reversal of Precedence (Article 23.9) is used to conserve usage of the following names (family-group names followed by genus-group names): Perigonini Horn, 1881 nom. protectum over Trechicini Bates, 1873 nom. oblitum (Carabidae), Anisodactylina Lacordaire, 1854 nom. protectum over Eurytrichina LeConte, 1848 nom. oblitum (Carabidae), Smicronychini Seidlitz, 1891 nom. protectum over Desmorini LeConte, 1876 nom. oblitum (Curculionidae), Bagoinae Thomson, 1859 nom. protectum over Lyprinae Gistel 1848 nom. oblitum (Curculionidae), Aterpina Lacordaire, 1863 nom. protectum over Heliomenina Gistel, 1848 nom. oblitum (Curculionidae), Naupactini Gistel, 1848 nom. protectum over Iphiini Schönherr, 1823 nom. oblitum (Curculionidae), Cleonini Schönherr, 1826 nom. protectum over Geomorini Schönherr, 1823 nom. oblitum (Curculionidae), Magdalidini Pascoe, 1870 nom. protectum over Scardamyctini Gistel, 1848 nom. oblitum (Curculionidae), Agrypninae/-ini Candèze, 1857 nom. protecta over Adelocerinae/-ini Gistel, 1848 nom. oblita and Pangaurinae/-ini Gistel, 1856 nom. oblita (Elateridae), Prosternini Gistel, 1856 nom. protectum over Diacanthini Gistel, 1848 nom. oblitum (Elateridae), Calopodinae Costa, 1852 nom. protectum over Sparedrinae Gistel, 1848 nom. oblitum (Oedemeridae), Adesmiini Lacordaire, 1859 nom. protectum over Macropodini Agassiz, 1846 nom. oblitum (Tenebrionidae), Bolitophagini Kirby, 1837 nom. protectum over Eledonini Billberg, 1820 nom. oblitum (Tenebrionidae), Throscidae Laporte, 1840 nom. protectum over Stereolidae Rafinesque, 1815 nom. oblitum (Throscidae) and Lophocaterini Crowson, 1964 over Lycoptini Casey, 1890 nom. oblitum (Trogossitidae); Monotoma Herbst, 1799 nom. protectum over Monotoma Panzer, 1792 nom. oblitum (Monotomidae); Pediacus Shuckard, 1839 nom. protectum over Biophloeus Dejean, 1835 nom. oblitum (Cucujidae), Pachypus Dejean, 1821 nom. protectum over Pachypus Billberg, 1820 nom. oblitum (Scarabaeidae), Sparrmannia Laporte, 1840 nom. protectum over Leocaeta Dejean, 1833 nom. oblitum and Cephalotrichia Hope, 1837 nom. oblitum (Scarabaeidae).
PMCID: PMC3088472  PMID: 21594053
Beetles; nomenclature; classification; world fauna; family-group names; type genera; stem
14.  Asymmetrical lateral ventricular enlargement in Parkinson’s disease 
A recent case report suggested the presence of asymmetrical lateral ventricular enlargement associated with motor asymmetry in Parkinson’s disease (PD). The current study explored these associations further.
Magnetic resonance imaging (3T) scans were obtained on 17 PD and 15 healthy Control subjects at baseline and 12–30 months later. Baseline and longitudinal lateral ventricular volumetric changes were compared between contralateral and ipsilateral ventricles in PD subjects relative to symptom onset side and in Controls relative to their dominant hand. Correlations between changes in ventricular volume and United Parkinson’s Disease Rating Scale motor scores (UPDRS-III) while on medication were determined.
The lateral ventricle contralateral to symptom onset side displayed a faster rate of enlargement compared to the ipsilateral (p=0.004) in PD subjects, with no such asymmetry detected (p=0.312) in Controls. There was a positive correlation between ventricular enlargement and worsening motor function assessed by UPDRS-III scores (r=0.96, p<0.001).
There is asymmetrical lateral ventricular enlargement that is associated with PD motor asymmetry and progression. Further studies are warranted to investigate the underlying mechanism(s), as well as the potential of using volumetric measurements as a marker for PD progression.
PMCID: PMC2908273  PMID: 19187264
Structural magnetic resonance imaging; semi-automatic segmentation; lateral ventricular volume; motor asymmetry; Parkinson’s disease
15.  Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives 
Deuterostomes are a monophyletic group of animals that include the vertebrates, invertebrate chordates, ambulacrarians and xenoturbellids. Fossil representatives from most major deuterostome groups, including some phylum-level crown groups, are found in the Lower Cambrian, suggesting that evolutionary divergence occurred in the Late Precambrian, in agreement with some molecular clock estimates. Molecular phylogenies, larval morphology and the adult heart/kidney complex all support echinoderms and hemichordates as a sister grouping (Ambulacraria). Xenoturbellids are a relatively newly discovered phylum of worm-like deuterostomes that lacks a fossil record, but molecular evidence suggests that these animals are a sister group to the Ambulacraria. Within the chordates, cephalochordates share large stretches of chromosomal synteny with the vertebrates, have a complete Hox complex and are sister group to the vertebrates based on ribosomal and mitochondrial gene evidence. In contrast, tunicates have a highly derived adult body plan and are sister group to the vertebrates based on the analyses of concatenated genomic sequences. Cephalochordates and hemichordates share gill slits and an acellular cartilage, suggesting that the ancestral deuterostome also shared these features. Gene network data suggest that the deuterostome ancestor had an anterior–posterior body axis specified by Hox and Wnt genes, a dorsoventral axis specified by a BMP/chordin gradient, and was bilaterally symmetrical with left–right asymmetry determined by expression of nodal.
PMCID: PMC2615822  PMID: 18192178
deuterostomes; chordate evolution; Ambulacraria
16.  The Phytotoxin Albicidin is a Novel Inhibitor of DNA Gyrase▿  
Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most coumarins and quinolones. Albicidin blocks the religation of the cleaved DNA intermediate during the gyrase catalytic sequence and also inhibits the relaxation of supercoiled DNA by gyrase and topoisomerase IV. Unlike the coumarins, albicidin does not inhibit the ATPase activity of gyrase. In contrast to the quinolones, the albicidin concentration required to stabilize the gyrase cleavage complex increases 100-fold in the absence of ATP. The slow peptide poisons microcin B17 and CcdB also access ATP-dependent conformations of gyrase to block religation, but in contrast to albicidin, they do not inhibit supercoiling under routine assay conditions. Some mutations in gyrA, known to confer high-level resistance to quinolones or CcdB, confer low-level resistance or hypersensitivity to albicidin in Escherichia coli. Within the albicidin biosynthesis region in X. albilineans is a gene encoding a pentapeptide repeat protein designated AlbG that binds to E. coli DNA gyrase and that confers a sixfold increase in the level of resistance to albicidin in vitro and in vivo. These results demonstrate that DNA gyrase is the molecular target of albicidin and that X. albilineans encodes a gyrase-interacting protein for self-protection. The novel features of the gyrase-albicidin interaction indicate the potential for the development of new antibacterial drugs.
PMCID: PMC1797663  PMID: 17074789
17.  Cyclicity in the fossil record mirrors rock outcrop area 
Biology Letters  2005;1(4):443-445.
In a recent article, Rohde & Muller (Rohde & Muller 2005 Nature 434, 208–210) identified a strong 62 Myr cyclicity in the history of marine diversity through the Phanerozoic. The data they presented were highly convincing, yet they were unable to explain what process might have generated this pattern. A significant correlation between observed genus-level diversity (after removal of long-term trends) and the amount of marine sedimentary rock measured at a surface outcrop in Western Europe is demonstrated. This suggests that cyclicity originates from long-term changes in sedimentary depositional and erosional regimes, and raises the strong possibility that the cyclicity apparent in the record of marine fossils is not a biological signal but a sampling signal.
PMCID: PMC1626379  PMID: 17148228
Phanerozoic diversity patterns; cyclicity; quality of fossil record
18.  A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site 
Nucleic Acids Research  2006;34(17):4667-4676.
DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase ‘cleavage complex’, but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB–GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB–gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place.
PMCID: PMC1635281  PMID: 16963775
19.  Taxonomy and fossils: a critical appraisal. 
Many compendia at the species, genus and family levels document the fossil record, but these are not standardized, nor usually critical in content, and few are available on the World Wide Web. The sampling of the available record is good for organisms with fossilizable parts, but preservational constraints on the entire morphology, life history and geographical distribution lead to difficulties in recognizing and naming species. We recommend abandoning some of the palaeontological species concepts such as chronospecies and stratospecies, and we advocate species recognition based on unique combinations of characters. The compilation of species lists is extremely time consuming, and given the inherent problems we suggest that compilation of generic lists is a more achievable goal because genera are recognized by definitive morphological characters. In calculating taxon duration, care must be taken to distinguish between mono-, para- and polyphyletic groups, the first being the only reliable unit for use in calculating diversity curves. We support the inclusion of fossils into classifications based on Recent organisms, but we recognize some of the problems this may pose for standard Linnaean classifications. Web-based taxonomy is the way forward, having the advantages of speed and currency of information dissemination, universal access with links to primary literature and increasingly sophisticated imagery. These advantages over conventional outlets will only be realized with careful Web design and a commitment to maintenance.
PMCID: PMC1693348  PMID: 15253350
20.  The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation 
The origins and geological history of the modern fauna of deep-sea echinoids is explored using a combination of palaeontological and molecular data. We demonstrate that, whereas generalist omnivores have migrated into the deep sea in low numbers over the past 200 Myr, there was a short time-interval between approximately 75 and 55 Myr when the majority of specialist detritivore clades independently migrated off-shelf. This coincides with a marked increase in seasonality, continental run-off and surface water productivity, and suggests that increasing organic carbon delivery into ocean basins was an important controlling factor. Oceanic anoxic events, by contrast, appear to have played a subsidiary role in controlling deep-sea diversity.
PMCID: PMC1599859  PMID: 15888420
biodiversity; deep-sea; echinoids; palaeo-productivity; ocean anoxia

Results 1-20 (20)