Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Structural Insights into Arl1-Mediated Targeting of the Arf-GEF BIG1 to the trans-Golgi 
Cell Reports  2016;16(3):839-850.
The GTPase Arf1 is the major regulator of vesicle traffic at both the cis- and trans-Golgi. Arf1 is activated at the cis-Golgi by the guanine nucleotide exchange factor (GEF) GBF1 and at the trans-Golgi by the related GEF BIG1 or its paralog, BIG2. The trans-Golgi-specific targeting of BIG1 and BIG2 depends on the Arf-like GTPase Arl1. We find that Arl1 binds to the dimerization and cyclophilin binding (DCB) domain in BIG1 and report a crystal structure of human Arl1 bound to this domain. Residues in the DCB domain that bind Arl1 are required for BIG1 to locate to the Golgi in vivo. DCB domain-binding residues in Arl1 have a distinct conformation from those in known Arl1-effector complexes, and this plasticity allows Arl1 to interact with different effectors of unrelated structure. The findings provide structural insight into how Arf1 GEFs, and hence active Arf1, achieve their correct subcellular distribution.
Graphical Abstract
•Arl1 binds the N-terminal DCB domain of the Arf1-GEF BIG1•Structure of the human DCBBIG1/Arl1 complex is solved at 2.3 Å resolution•The Arl1 binding surface on the DCB domain is unrelated to known Arl1 effectors•Structure-guided mutation shows BIG1 needs Ar11 binding for Golgi targeting
The GTPase Arf1 is essential for Golgi function and is activated on the trans-Golgi by the BIG1 exchange factor. A second GTPase, Arl1, is required for BIG1 recruitment. Galindo et al. find that Arl1 binds to the DCB domain of BIG1 and determine the structure of human Arl1 bound to this domain.
PMCID: PMC4956616  PMID: 27373159
2.  An antibody toolkit for the study of membrane traffic in Drosophila melanogaster 
Biology Open  2016;5(7):987-992.
The use of Drosophila melanogaster as a model organism has been pivotal to understanding the developmental processes of metazoans. However, the use of flies for studying subcellular organization is hampered by a paucity of reliable reagents to label specific organelles. Here, we describe the generation of mouse monoclonal antibodies against a set of markers of the secretory and endocytic pathways, along with goat polyclonal antibodies against two Golgi proteins. We show that the monoclonal antibodies are highly specific and sufficiently sensitive to detect endogenous proteins in crude extracts by immunoblotting with little background staining. By immunofluorescence the major compartments of the membrane traffic system (including the endoplasmic reticulum, the Golgi, and early and late endosomes) are labeled by at least one antibody. Moreover, the antibodies can be used to label organelles in fly tissues including salivary glands and wing imaginal discs. We anticipate that these antibodies will provide a useful tool kit to facilitate the investigation of how the endomembrane system functions and varies in the diverse tissue types of metazoans.
Summary: We report the generation and characterization of set of monoclonal and polyclonal antibodies for labeling the major compartments of the secretory and endocytic pathways in Drosophila melanogaster.
PMCID: PMC4958275  PMID: 27256406
Organelle markers; Drosophila; Golgi; Endosomes; Endoplasmic reticulum
3.  The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins 
Science (New York, N.Y.)  2014;346(6209):1256898.
The Golgi apparatus is a multi-compartment central sorting station at the intersection of secretory and endocytic vesicular traffic. The mechanisms that permit cargo-loaded transport vesicles from different origins to selectively access different Golgi compartments are incompletely understood. Here, we develop a re-routing and capture assay to investigate systematically the vesicle-tethering activities of ten widely conserved golgin coiled-coil proteins. We find that subsets of golgins with distinct localizations on the Golgi surface have capture activities toward vesicles of different origins. These findings demonstrate that golgins act as tethers in vivo, and hence the specificity we find to be encoded in this tethering is likely to make a major contribution to the organization of membrane traffic at the Golgi apparatus.
PMCID: PMC4254398  PMID: 25359980
4.  The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi 
Biology Open  2015;4(4):474-481.
The small G proteins of the Arf family play critical roles in membrane trafficking and cytoskeleton organization. However, the function of some members of the family remains poorly understood including Arl5 which is widely conserved in eukaryotes. Humans have two closely related Arl5 paralogues (Arl5a and Arl5b), and both Arl5a and Arl5b localize to the trans-Golgi with Arl5b being involved in retrograde traffic from endosomes to the Golgi apparatus. To investigate the function of Arl5, we have used Drosophila melanogaster as a model system. We find that the single Arl5 orthologue in Drosophila also localizes to the trans-Golgi, but flies lacking the Arl5 gene are viable and fertile. By using both liposome and column based affinity chromatography methods we find that Arl5 interacts with the Golgi-associated retrograde protein (GARP) complex that acts in the tethering of vesicles moving from endosomes to the trans-Golgi network (TGN). In Drosophila tissues the GARP complex is partially displaced from the Golgi when Arl5 is absent, and the late endosomal compartment is enlarged. In addition, in HeLa cells GARP also becomes cytosolic upon depletion of Arl5b. These phenotypes are consistent with a role in endosome-to-Golgi traffic, but are less severe than loss of GARP itself. Thus it appears that Arl5 is one of the factors that directs the recruitment of the GARP complex to the trans-Golgi, and this function is conserved in both flies and humans.
PMCID: PMC4400590  PMID: 25795912
Membrane traffic; Golgi apparatus; Arf family GTPase
5.  Toward a Comprehensive Map of the Effectors of Rab GTPases 
Developmental Cell  2014;31(3):358-373.
The Rab GTPases recruit peripheral membrane proteins to intracellular organelles. These Rab effectors typically mediate the motility of organelles and vesicles and contribute to the specificity of membrane traffic. However, for many Rabs, few, if any, effectors have been identified; hence, their role remains unclear. To identify Rab effectors, we used a comprehensive set of Drosophila Rabs for affinity chromatography followed by mass spectrometry to identify the proteins bound to each Rab. For many Rabs, this revealed specific interactions with Drosophila orthologs of known effectors. In addition, we found numerous Rab-specific interactions with known components of membrane traffic as well as with diverse proteins not previously linked to organelles or having no known function. We confirm over 25 interactions for Rab2, Rab4, Rab5, Rab6, Rab7, Rab9, Rab18, Rab19, Rab30, and Rab39. These include tethering complexes, coiled-coiled proteins, motor linkers, Rab regulators, and several proteins linked to human disease.
Graphical Abstract
•Proteomic screen identifies effectors of Drosophila Rabs with a human ortholog•Specific hits include orthologs of numerous known effectors of mammalian Rabs•Validated effectors include traffic proteins and those of unknown function•Orthologs of disease genes CLEC16A, LRRK2, and SPG20 are validated as effectors
Rab GTPases organize cellular compartments by recruiting specific effectors to organelle membranes. This paper describes affinity chromatography using all Drosophila Rabs with a mammalian ortholog. The Rab interactors found include known effectors, tethering complexes, coiled-coil proteins, motor proteins, proteins of unknown function, and several proteins linked to human disease.
PMCID: PMC4232348  PMID: 25453831
6.  γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts 
Molecular Biology of the Cell  2014;25(13):2039-2050.
Microtubule orientation controls polarized trafficking in neurons. In this work, γ-tubulin is identified as a key regulator of both axonal and dendritic microtubule polarity. In addition, the idea that γ-tubulin works in dendrites by residing at Golgi outposts is tested.
Neurons have highly polarized arrangements of microtubules, but it is incompletely understood how microtubule polarity is controlled in either axons or dendrites. To explore whether microtubule nucleation by γ-tubulin might contribute to polarity, we analyzed neuronal microtubules in Drosophila containing gain- or loss-of-function alleles of γ-tubulin. Both increased and decreased activity of γ-tubulin, the core microtubule nucleation protein, altered microtubule polarity in axons and dendrites, suggesting a close link between regulation of nucleation and polarity. To test whether nucleation might locally regulate polarity in axons and dendrites, we examined the distribution of γ-tubulin. Consistent with local nucleation, tagged and endogenous γ-tubulins were found in specific positions in dendrites and axons. Because the Golgi complex can house nucleation sites, we explored whether microtubule nucleation might occur at dendritic Golgi outposts. However, distinct Golgi outposts were not present in all dendrites that required regulated nucleation for polarity. Moreover, when we dragged the Golgi out of dendrites with an activated kinesin, γ-tubulin remained in dendrites. We conclude that regulated microtubule nucleation controls neuronal microtubule polarity but that the Golgi complex is not directly involved in housing nucleation sites.
PMCID: PMC4072577  PMID: 24807906
7.  The Golgin Coiled-Coil Proteins of the Golgi Apparatus 
A number of long coiled-coil proteins are present on the Golgi. Often referred to as “golgins,” they are well conserved in evolution and at least five are likely to have been present in the last common ancestor of all eukaryotes. Individual golgins are found in different parts of the Golgi stack, and they are typically anchored to the membrane at their carboxyl termini by a transmembrane domain or by binding a small GTPase. They appear to have roles in membrane traffic and Golgi structure, but their precise function is in most cases unclear. Many have binding sites for Rab family GTPases along their length, and this has led to the suggestion that the golgins act collectively to form a tentacular matrix that surrounds the Golgi to capture Rab-coated membranes in the vicinity of the stack. Such a collective role might explain the lack of cell lethality seen following loss of some of the genes in human familial conditions or mouse models.
Long coiled-coil proteins are present throughout Golgi stacks. These “golgins” are membrane anchored and may collectively form a matrix that is recognized by the Rab GTPases required for Golgi trafficking.
PMCID: PMC3098672  PMID: 21436057
8.  Open questions: What is there left for cell biologists to do? 
BMC Biology  2013;11:16.
PMCID: PMC3583729  PMID: 23445835
9.  Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis 
BMC Biology  2012;10:71.
Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes.
Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory.
Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
PMCID: PMC3425129  PMID: 22873208
Organelles; G proteins; humans; last eukaryotic common ancestor
10.  The small G protein Arl1 directs the trans-Golgi–specific targeting of the Arf1 exchange factors BIG1 and BIG2 
The Journal of Cell Biology  2012;196(3):327-335.
Specificity in Arf1 GEF recruitment to the trans-Golgi, and thus in localized Arf1 activation, is provided by an Arf-like G protein.
The small G protein Arf1 regulates Golgi traffic and is activated by two related types of guanine nucleotide exchange factor (GEF). GBF1 acts at the cis-Golgi, whereas BIG1 and its close paralog BIG2 act at the trans-Golgi. Peripheral membrane proteins such as these GEFs are often recruited to membranes by small G proteins, but the basis for specific recruitment of Arf GEFs, and hence Arfs, to Golgi membranes is not understood. In this paper, we report a liposome-based affinity purification method to identify effectors for small G proteins of the Arf family. We validate this with the Drosophila melanogaster Arf1 orthologue (Arf79F) and the related class II Arf (Arf102F), which showed a similar pattern of effector binding. Applying the method to the Arf-like G protein Arl1, we found that it binds directly to Sec71, the Drosophila ortholog of BIG1 and BIG2, via an N-terminal region. We show that in mammalian cells, Arl1 is necessary for Golgi recruitment of BIG1 and BIG2 but not GBF1. Thus, Arl1 acts to direct a trans-Golgi–specific Arf1 GEF, and hence active Arf1, to the trans side of the Golgi.
PMCID: PMC3275380  PMID: 22291037
11.  A Systematic Approach to Pair Secretory Cargo Receptors with Their Cargo Suggests a Mechanism for Cargo Selection by Erv14 
PLoS Biology  2012;10(5):e1001329.
A systematic approach to visualize proteins exiting the endoplasmic reticulum paired with their cargo receptors identifies novel cargo for known receptors and reveals the mechanism of one conserved receptor, Erv14.
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term “PAIRS” (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ∼150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.
Author Summary
All cells sense their environment, respond to it, and communicate with neighboring cells. To perform these functions, cells use an impressive array of proteins that they display on their surface membranes and secrete into their external environment. Newly synthesized proteins destined for the surface of nucleated cells, or to be secreted into the environment must enter the secretory pathway through the endoplasmic reticulum. Those that reside there remain behind, but most leave for their next destination as cargo proteins in lipid vesicles. To be packaged into vesicles, many of them require a “cargo receptor,” which recognizes and tethers specific cargo proteins in the vesicles. Our study takes a systematic approach to identify the range of cargo proteins that bind to each of the known receptors in yeast. By using this approach, we both discover new cargo for known cargo receptors and delineate the rule that governs cargo selection for one cargo receptor, Erv14. Thus, our study demonstrates a novel approach to identify the cargo for any receptor or to discover new cargo receptors.
PMCID: PMC3358343  PMID: 22629230
12.  Arl8 and SKIP Act Together to Link Lysosomes to Kinesin-1 
Developmental Cell  2011;21(6):1171-1178.
Lysosomes move bidirectionally on microtubules, and this motility can be stimulated by overexpression of the small GTPase Arl8. By using affinity chromatography, we find that Arl8-GTP binds to the soluble protein SKIP (SifA and kinesin-interacting protein, aka PLEKHM2). SKIP was originally identified as a target of the Salmonella effector protein SifA and found to bind the light chain of kinesin-1 to activate the motor on the bacteria's replicative vacuole. We show that in uninfected cells both Arl8 and SKIP are required for lysosomes to distribute away from the microtubule-organizing center. We identify two kinesin light chain binding motifs in SKIP that are required for lysosomes to accumulate kinesin-1 and redistribute to the cell periphery. Thus, Arl8 binding to SKIP provides a link from lysosomal membranes to plus-end-directed motility. A splice variant of SKIP that lacks a light chain binding motif does not stimulate movement, suggesting fine-tuning by alternative splicing.
Graphical Abstract
► The lysosomal GTPase Arl8 binds to the kinesin-1 linker SKIP ► SKIP and Arl8 are required for the normal intracellular distribution of lysosomes ► SKIP and Arl8 are required for the acid-induced centripetal movement of lysosomes ► SKIP contains a kinesin light chain binding site subject to alternative splicing
PMCID: PMC3240744  PMID: 22172677
13.  What is the Golgi apparatus, and why are we asking? 
BMC Biology  2011;9:63.
PMCID: PMC3184113  PMID: 21961959
14.  Membrane Delivery to the Yeast Autophagosome from the Golgi–Endosomal System 
Molecular Biology of the Cell  2010;21(22):3998-4008.
The integral membrane protein Atg9 is delivered to the autophagosome in yeast and mammalian cells. We find that Atg9 does not originate from mitochondria and cannot reach the autophagosome directly from the ER. Instead, pairwise combinations of mutations in Golgi-endosomal traffic components cause defects in Atg9 delivery during starvation.
While many of the proteins required for autophagy have been identified, the source of the membrane of the autophagosome is still unresolved with the endoplasmic reticulum (ER), endosomes, and mitochondria all having been evoked. The integral membrane protein Atg9 is delivered to the autophagosome during starvation and in the related cytoplasm-to-vacuole (Cvt) pathway that occurs constitutively in yeast. We have examined the requirements for delivery of Atg9-containing membrane to the yeast autophagosome. Atg9 does not appear to originate from mitochondria, and Atg9 cannot reach the forming autophagosome directly from the ER or early Golgi. Components of traffic between Golgi and endosomes are known to be required for the Cvt pathway but do not appear required for autophagy in starved cells. However, we find that pairwise combinations of mutations in Golgi-endosomal traffic components apparently only required for the Cvt pathway can cause profound defects in Atg9 delivery and autophagy in starved cells. Thus it appears that membrane that contains Atg9 is delivered to the autophagosome from the Golgi-endosomal system rather than from the ER or mitochondria. This is underestimated by examination of single mutants, providing a possible explanation for discrepancies between yeast and mammalian studies on Atg9 localization and autophagosome formation.
PMCID: PMC2982105  PMID: 20861302
15.  A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties 
Cell  2010;142(1):158-169.
The various membranes of eukaryotic cells differ in composition, but it is at present unclear if this results in differences in physical properties. The sequences of transmembrane domains (TMDs) of integral membrane proteins should reflect the physical properties of the bilayers in which they reside. We used large datasets from both fungi and vertebrates to perform a comprehensive comparison of the TMDs of proteins from different organelles. We find that TMDs are not generic but have organelle-specific properties with a dichotomy in TMD length between the early and late parts of the secretory pathway. In addition, TMDs from post-ER organelles show striking asymmetries in amino acid compositions across the bilayer that is linked to residue size and varies between organelles. The pervasive presence of organelle-specific features among the TMDs of a particular organelle has implications for TMD prediction, regulation of protein activity by location, and sorting of proteins and lipids in the secretory pathway.
Graphical Abstract
► Transmembrane domains (TMDs) vary in length and residue composition between organelles ► TMD lengths differ pre- versus post-Golgi but not between apical and basolateral surfaces ► The differences between TMDs are large enough to have value in predicting location ► Pervasive differences mean TMDs could collectively contribute to membrane properties
PMCID: PMC2928124  PMID: 20603021
16.  Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins 
The Journal of Cell Biology  2008;183(4):607-615.
Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain golgins, whose C termini bind the Arf-like 1 G protein on the trans-Golgi, can also bind four members of the Rab family of G proteins. The Rab2-, Rab6-, Rab19-, and Rab30-binding sites are within the coiled-coil regions that are not required for Golgi targeting. Binding sites for two of these Rabs are also present on two coiled-coil proteins of the cis-Golgi, the Drosophila melanogaster orthologues of GM130 and GMAP-210. We suggest an integrated model for a tentacular Golgi in which coiled-coil proteins surround the Golgi to capture and retain Rab-containing membranes, excluding other structures such as ribosomes. Binding sites for diverse Rabs could ensure that incoming carriers are captured on first contact and moved to their correct destination within the stack.
PMCID: PMC2582897  PMID: 19001129
17.  Identification of a Guanine Nucleotide Exchange Factor for Arf3, the Yeast Orthologue of Mammalian Arf6 
PLoS ONE  2007;2(9):e842.
Small G proteins of the Arf and Rab families are fundamental to the organisation and activity of intracellular membranes. One of the most well characterised of these G proteins is mammalian Arf6, a protein that participates in many cellular processes including endocytosis, actin remodelling and cell adhesion. Exchange of GDP for GTP on Arf6 is performed by a variety of guanine nucleotide exchange factors (GEFs), principally of the cytohesin (PSCD) and EFA6 (PSD) families. In this paper we describe the characterisation of a GEF for the yeast orthologue of Arf6, Arf3, which we have named Yel1 (yeast EFA6-like-1) using yeast genetics, fluorescence microscopy and in vitro nucleotide exchange assays. Yel1 appears structurally related to the EFA6 family of GEFs, having an N-terminal Sec7 domain and C-terminal PH and coiled-coil domains. We find that Yel1 is constitutively targeted to regions of polarised growth in yeast, where it co-localises with Arf3. Moreover the Sec7 domain of Yel1 is required for its membrane targeting and for that of Arf3. Finally we show that the isolated Yel1 Sec7 domain strongly stimulates nucleotide exchange activity specifically on Arf3 in vitro.
PMCID: PMC1950683  PMID: 17786213
18.  The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic 
The Journal of Cell Biology  2007;176(3):255-261.
The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with a previously uncharacterized coiled-coil protein, Ydl099w (Bug1). In addition, Grh1 interacts with the Sec23/24 component of the COPII coat. Neither Grh1 nor Bug1 are essential for growth, but biochemical assays and genetic interactions with known mediators of vesicle tethering (Uso1 and Ypt1) suggest that the Grh1–Bug1 complex contributes to a redundant network of interactions that mediates consumption of COPII vesicles and formation of the cis-Golgi.
PMCID: PMC2063951  PMID: 17261844
19.  Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins 
The Journal of Cell Biology  2006;172(5):645-650.
The Ras superfamily is comprised of at least four large families of regulatory guanosine triphosphate–binding proteins, including the Arfs. The Arf family includes three different groups of proteins: the Arfs, Arf-like (Arls), and SARs. Several Arf family members have been very highly conserved throughout eukaryotic evolution and have orthologues in evolutionally diverse species. The different means by which Arf family members have been identified have resulted in an inconsistent and confusing array of names. This confusion is further compounded by differences in nomenclature between different species. We propose a more consistent nomenclature for the human members of the Arf family that may also serve as a guide for nomenclature in other species.
PMCID: PMC2063696  PMID: 16505163
20.  The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster 
The Journal of Cell Biology  2005;169(6):953-963.
The exocyst is an octameric complex required for polarized secretion. Some components of the exocyst are found on the plasma membrane, whereas others are recruited to Golgi membranes, suggesting that exocyst assembly tethers vesicles to their site of fusion. We have found that in Drosophila melanogaster oocytes the majority of the exocyst component Sec5 is unexpectedly present in clathrin-coated pits and vesicles at the plasma membrane. In oocytes, the major substrate for clathrin-dependent endocytosis is the vitellogenin receptor Yolkless. A truncation mutant of Sec5 (sec5E13) allows the formation of normally sized oocytes but with greatly reduced yolk uptake. We find that in sec5E13 oocytes Yolkless accumulates aberrantly in late endocytic compartments, indicating a defect in the endocytic cycling of the receptor. An analogous truncation of the yeast SEC5 gene results in normal secretion but a temperature-sensitive defect in endocytic recycling. Thus, the exocyst may act in both Golgi to plasma membrane traffic and endocytic cycling, and hence in oocytes is recruited to clathrin-coated pits to facilitate the rapid recycling of Yolkless.
PMCID: PMC2171629  PMID: 15955846
21.  The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi 
The Journal of Cell Biology  2004;167(2):281-292.
Rud3p is a coiled-coil protein of the yeast cis-Golgi. We find that Rud3p is localized to the Golgi via a COOH-terminal domain that is distantly related to the GRIP domain that recruits several coiled-coil proteins to the trans-Golgi by binding the small Arf-like GTPase Arl1p. In contrast, Rud3p binds to the GTPase Arf1p via this COOH-terminal “GRIP-related Arf-binding” (GRAB) domain. Deletion of RUD3 is lethal in the absence of the Golgi GTPase Ypt6p, and a screen of other mutants showing a similar genetic interaction revealed that Golgi targeting of Rud3p also requires Erv14p, a cargo receptor that cycles between the endoplasmic reticulum and Golgi. The one human protein with a GRAB domain, GMAP-210 (CEV14/Trip11/Trip230), is known to be on the cis-Golgi, but the COOH-terminal region that contains the GRAB domain has been reported to bind to centrosomes and γ-tubulin (Rios, R.M, A. Sanchis, A.M. Tassin, C. Fedriani, and M. Bornens. 2004. Cell. 118:323–335). In contrast, we find that this region binds to the Golgi in a GRAB domain–dependent manner, suggesting that GMAP-210 may not link the Golgi to γ-tubulin and centrosomes.
PMCID: PMC2172552  PMID: 15504911
22.  CASP, the Alternatively Spliced Product of the Gene Encoding the CCAAT-Displacement Protein Transcription Factor, Is a Golgi Membrane Protein Related to Giantin 
Molecular Biology of the Cell  2002;13(11):3761-3774.
Large coiled-coil proteins are being found in increasing numbers on the membranes of the Golgi apparatus and have been proposed to function in tethering of transport vesicles and in the organization of the Golgi stack. Members of one class of Golgi coiled-coil protein, comprising giantin and golgin-84, are anchored to the bilayer by a single C-terminal transmembrane domain (TMD). In this article, we report the characterization of another mammalian coiled-coil protein, CASP, that was originally identified as an alternatively spliced product of the CUTL1 gene that encodes CCAAT-displacement protein (CDP), the human homologue of the Drosophila homeodomain protein Cut. We find that the Caenorhabditis elegans homologues of CDP and CASP are also generated from a single gene. CASP lacks the DNA binding motifs of CDP and was previously reported to be a nuclear protein. Herein, we show that it is in fact a Golgi protein with a C-terminal TMD and shares with giantin and golgin-84 a conserved histidine in its TMD. However, unlike these proteins, CASP has a homologue in Saccharomyces cerevisiae, which we call COY1. Deletion of COY1 does not affect viability, but strikingly restores normal growth to cells lacking the Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptor Gos1p. The conserved histidine is necessary for Coy1p's activity in cells lacking Gos1p, suggesting that the TMD of these transmembrane Golgi coiled-coil proteins is directly involved in their function.
PMCID: PMC133590  PMID: 12429822
23.  Accumulation of Caveolin in the Endoplasmic Reticulum Redirects the Protein to Lipid Storage Droplets 
The Journal of Cell Biology  2001;152(5):1071-1078.
Caveolin-1 is normally localized in plasma membrane caveolae and the Golgi apparatus in mammalian cells. We found three treatments that redirected the protein to lipid storage droplets, identified by staining with the lipophilic dye Nile red and the marker protein ADRP. Caveolin-1 was targeted to the droplets when linked to the ER-retrieval sequence, KKSL, generating Cav–KKSL. Cav–ΔN2, an internal deletion mutant, also accumulated in the droplets, as well as in a Golgi-like structure. Third, incubation of cells with brefeldin A caused caveolin-1 to accumulate in the droplets. This localization persisted after drug washout, showing that caveolin-1 was transported out of the droplets slowly or not at all. Some overexpressed caveolin-2 was also present in lipid droplets. Experimental reduction of cellular cholesteryl ester by 80% did not prevent targeting of Cav–KKSL to the droplets. Cav–KKSL expression did not grossly alter cellular triacylglyceride or cholesteryl levels, although droplet morphology was affected in some cells. These data suggest that accumulation of caveolin-1 to unusually high levels in the ER causes targeting to lipid droplets, and that mechanisms must exist to ensure the rapid exit of newly synthesized caveolin-1 from the ER to avoid this fate.
PMCID: PMC2198801  PMID: 11238461
caveolae; brefeldin A; retrograde transport; triacylglycerol; cholesteryl ester
24.  Dual Targeting of Osh1p, a Yeast Homologue of Oxysterol-binding Protein, to both the Golgi and the Nucleus-Vacuole Junction 
Molecular Biology of the Cell  2001;12(6):1633-1644.
Oxysterol binding protein (OSBP) is the only protein known to bind specifically to the group of oxysterols with potent effects on cholesterol homeostasis. Although the function of OSBP is currently unknown, an important role is implicated by the existence of multiple homologues in all eukaryotes so far examined. OSBP and a subset of homologues contain pleckstrin homology (PH) domains. Such domains are responsible for the targeting of a wide range of proteins to the plasma membrane. In contrast, OSBP is a peripheral protein of Golgi membranes, and its PH domain targets to the trans-Golgi network of mammalian cells. In this article, we have characterized Osh1p, Osh2p, and Osh3p, the three homologues of OSBP in Saccharomyces cerevisiae that contain PH domains. Examination of a green fluorescent protein (GFP) fusion to Osh1p revealed a striking dual localization with the protein present on both the late Golgi, and in the recently described nucleus-vacuole (NV) junction. Deletion mapping revealed that the PH domain of Osh1p specified targeting to the late Golgi, and an ankyrin repeat domain targeting to the NV junction, the first such targeting domain identified for this structure. GFP fusions to Osh2p and Osh3p showed intracellular distributions distinct from that of Osh1p, and their PH domains appear to contribute to their differing localizations.
PMCID: PMC37330  PMID: 11408574
25.  Inositol Phosphorylceramide Synthase Is Located in the Golgi Apparatus of Saccharomyces cerevisiae 
Molecular Biology of the Cell  2000;11(7):2267-2281.
The plasma membrane of eukaryotic cells differs in lipid composition from most of the internal organelles, presumably reflecting differences in many of its functions. In particular, the plasma membrane is rich in sphingolipids and sterols, one property of which is to decrease the permeability and increase the thickness of lipid bilayers. In this paper, we examine the length of transmembrane domains throughout the yeast secretory pathway. Although the transmembrane domains of cis and medial Golgi residents are similar to those of endoplasmic reticulum proteins, these domains lengthen substantially beyond the medial Golgi, suggesting a thickening of the bilayer. Yeast sphingolipids have particularly long acyl chains, and Aur1p, the inositol phosphorylceramide synthase that initiates yeast sphingolipid synthesis, was found to be located in the Golgi apparatus by both immunofluorescence and membrane fractionation, with its active site apparently in the Golgi lumen. Thus, it appears that sphingolipid synthesis in yeast takes place in the Golgi, separated from glycerophospholipid synthesis in the endoplasmic reticulum. A similar separation has been found in mammalian cells, and this conservation suggests that such an arrangement of enzymes within the secretory pathway could be important for the creation of bilayers of different thickness within the cell.
PMCID: PMC14918  PMID: 10888667

Results 1-25 (25)