Search tips
Search criteria

Results 1-14 (14)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Heterogeneity and Convergence of Olfactory First-Order Neurons Account for the High Speed and Sensitivity of Second-Order Neurons 
PLoS Computational Biology  2014;10(12):e1003975.
In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs), all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs) within a single restricted brain area. The functional simplicity of this system makes it a favorable model for studying the factors that contribute to its exquisite sensitivity and speed. Sensory information—primarily the identity and intensity of the stimulus—is encoded as the firing rate of the action potentials, and possibly as the latency of the neuron response. We found that over all their dynamic range, PNs respond with a shorter latency and a higher firing rate than most ORNs. Modelling showed that the increased sensitivity of PNs can be explained by the ORN-to-PN convergent architecture alone, whereas their faster response also requires cell-to-cell heterogeneity of the ORN population. So, far from being detrimental to signal detection, the ORN heterogeneity is exploited by PNs, and results in two different schemes of population coding based either on the response of a few extreme neurons (latency) or on the average response of many (firing rate). Moreover, ORN-to-PN transformations are linear for latency and nonlinear for firing rate, suggesting that latency could be involved in concentration-invariant coding of the pheromone blend and that sensitivity at low concentrations is achieved at the expense of precise encoding at high concentrations.
Author Summary
Understanding how sensory signals are optimally encoded by nervous systems is of strong interest to neuroscientists, and also to engineers as it may lead to more efficient artificial detection systems. This is particularly relevant to olfaction, because the current electronic noses are far outperformed by their biological counterparts in terms of speed and sensitivity. We here use the moth sex pheromone processing system as a relatively simple model to understand early olfactory coding. We found that performance increases when olfactory information passes from first- to second-order neurons. Second-order neurons respond on average with shorter latency and higher sensitivity than first-order neurons. We show that two critical factors, convergent architecture and neuronal heterogeneity, are needed to account for increased performance.
PMCID: PMC4256018  PMID: 25474026
2.  Reactive Searching and Infotaxis in Odor Source Localization 
PLoS Computational Biology  2014;10(10):e1003861.
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
Author Summary
The moth mating race is a suitable model case for studying the efficiency of various search strategies and to compare them to real-world behavior. All there is to guide olfactory navigation are simple sporadic clues, i.e., single pheromone detections. Thus, a pheromone seeking male relies on a specifically adapted behavior where action selection is triggered by simple perceptional events. They switch between stereotypical movement sequences, as, for example, upwind surge and crosswind casting. This behavior can be either a consequence of cognitive processing or a reactive reflex of fixed action patterns. Suggesting a direct relationship between neuronal central activity and such action patterns, we combine and implement them as reactive strategies. We also employ infotaxis, an artificial intelligence algorithm specifically developed for searching in turbulent odor plumes. Using these strategies in cyborg experiments, we obtain and compare the resulting search trajectories. Our results indicate that complex, computationally expensive search strategies like infotaxis are not necessarily better than simple reactive ones. With respect to our set-up, reactive searching yields the shortest trajectories if and only if it includes a crosswind zigzagging phase that represents a short-term memory. Thus, already a minimal bit of simplistic memory can produce very efficient goal-directed behavior.
PMCID: PMC4211930  PMID: 25330317
3.  Estimating the Delay between Host Infection and Disease (Incubation Period) and Assessing Its Significance to the Epidemiology of Plant Diseases 
PLoS ONE  2014;9(1):e86568.
Knowledge of the incubation period of infectious diseases (time between host infection and expression of disease symptoms) is crucial to our epidemiological understanding and the design of appropriate prevention and control policies. Plant diseases cause substantial damage to agricultural and arboricultural systems, but there is still very little information about how the incubation period varies within host populations. In this paper, we focus on the incubation period of soilborne plant pathogens, which are difficult to detect as they spread and infect the hosts underground and above-ground symptoms occur considerably later. We conducted experiments on Rhizoctonia solani in sugar beet, as an example patho-system, and used modelling approaches to estimate the incubation period distribution and demonstrate the impact of differing estimations on our epidemiological understanding of plant diseases. We present measurements of the incubation period obtained in field conditions, fit alternative probability models to the data, and show that the incubation period distribution changes with host age. By simulating spatially-explicit epidemiological models with different incubation-period distributions, we study the conditions for a significant time lag between epidemics of cryptic infection and the associated epidemics of symptomatic disease. We examine the sensitivity of this lag to differing distributional assumptions about the incubation period (i.e. exponential versus Gamma). We demonstrate that accurate information about the incubation period distribution of a pathosystem can be critical in assessing the true scale of pathogen invasion behind early disease symptoms in the field; likewise, it can be central to model-based prediction of epidemic risk and evaluation of disease management strategies. Our results highlight that reliance on observation of disease symptoms can cause significant delay in detection of soil-borne pathogen epidemics and mislead practitioners and epidemiologists about the timing, extent, and viability of disease control measures for limiting economic loss.
PMCID: PMC3899291  PMID: 24466153
4.  Injury Profile SIMulator, a Qualitative Aggregative Modelling Framework to Predict Injury Profile as a Function of Cropping Practices, and Abiotic and Biotic Environment. II. Proof of Concept: Design of IPSIM-Wheat-Eyespot 
PLoS ONE  2013;8(10):e75829.
IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM's modelling approach consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to develop IPSIM-Wheat-Eyespot using IPSIM's modelling framework, simulation examples, an evaluation of the predictive quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the production situation.
PMCID: PMC3797717  PMID: 24146783
6.  Host Growth Can Cause Invasive Spread of Crops by Soilborne Pathogens 
PLoS ONE  2013;8(5):e63003.
Invasive soilborne plant pathogens cause substantial damage to crops and natural populations, but our understanding of how to prevent their epidemics or reduce their damage is limited. A key and experimentally-tested concept in the epidemiology of soilborne plant diseases is that of a threshold spacing between hosts below which epidemics (invasive spread) can occur. We extend this paradigm by examining how plant-root growth may alter the conditions for occurrence of soilborne pathogen epidemics in plant populations. We hypothesise that host-root growth can 1) increase the probability of pathogen transmission between neighbouring plants and, consequently, 2) decrease the threshold spacing for epidemics to occur. We predict that, in systems initially below their threshold conditions, root growth can trigger soilborne pathogen epidemics through a switch from non-invasive to invasive behaviour, while in systems above threshold conditions root growth can enhance epidemic development. As an example pathosystem, we studied the fungus Rhizoctonia solani on sugar beet in field experiments. To address hypothesis 1, we recorded infections within inoculum-donor and host-recipient pairs of plants with differing spacing. We translated these observations into the individual-level concept of pathozone, a host-centred form of dispersal kernel. To test hypothesis 2 and our prediction, we used the pathozone to parameterise a stochastic model of pathogen spread in a host population, contrasting scenarios of spread with and without host growth. Our results support our hypotheses and prediction. We suggest that practitioners of agriculture and arboriculture account for root system expansion in order to reduce the risk of soilborne-disease epidemics. We discuss changes in crop design, including increasing plant spacing and using crop mixtures, for boosting crop resilience to invasion and damage by soilborne pathogens. We speculate that the disease-induced root growth observed in some pathosystems could be a pathogen strategy to increase its population through host manipulation.
PMCID: PMC3648505  PMID: 23667560
7.  Multiphasic On/Off Pheromone Signalling in Moths as Neural Correlates of a Search Strategy 
PLoS ONE  2013;8(4):e61220.
Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.
PMCID: PMC3629186  PMID: 23613816
8.  Bestrophin-Encoded Ca2+-Activated Cl− Channels Underlie a Current with Properties Similar to the Native Current in the Moth Spodoptera littoralis Olfactory Receptor Neurons 
PLoS ONE  2012;7(12):e52691.
Responses of insect olfactory receptor neurons (ORNs) involve an entry of Ca2+ through olfactory heterodimeric receptor complexes. In moths, the termination of ORN responses was found to strongly depend on the external Ca2+ concentration through the activation of unknown Ca2+-dependent Cl− channels. We thus investigated the molecular identity of these Cl− channels. There is compelling evidence that bestrophins form Cl− channels when expressed in heterologous systems. Here we provide evidence that antennae of the moth Spodoptera littoralis express three transcripts encoding proteins with hallmarks of bestrophins. One of these transcripts, SlitBest1b, is expressed in ORNs. The heterologous expression of SlitBest1b protein in CHO-K1 cells yielded a Ca2+-activated Cl− current that shares electrophysiological properties with the native Ca2+-activated Cl− current of ORNs. Both currents are anionic, present similar dependence on the intracellular Ca2+ concentration, partly inactivate over time, have the same anion permeability sequence, the same sequence of inhibitory efficiency of blockers, the same almost linear I–V relationships and finally both currents do not depend on the cell volume. Therefore, our data suggest that SlitBest1b is a good candidate for being a molecular component of the olfactory Ca2+-activated Cl− channel and is likely to constitute part of the insect olfactory transduction pathway. A different function (e.g. regulation of other proteins, maintenance of the anionic homeostasis in the sensillar lymph) and a different role (e.g. involvement in the olfactory system development) cannot be excluded however.
PMCID: PMC3530479  PMID: 23300744
9.  A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila 
BMC Biology  2012;10:56.
Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme.
We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation.
Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction.
PMCID: PMC3414785  PMID: 22715942
carboxylesterase; esterase 6; olfaction; pheromone; signal termination
10.  Differential Interactions of Sex Pheromone and Plant Odour in the Olfactory Pathway of a Male Moth 
PLoS ONE  2012;7(3):e33159.
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.
PMCID: PMC3299628  PMID: 22427979
11.  It can't hurt to ask; a patient-centered quality of service assessment of health canada's medical cannabis policy and program 
In 2001 Health Canada responded to a series of Ontario court decisions by creating the Marihuana Medical Access Division (MMAD) and the Marihuana Medical Access Regulations (MMAR). Although Health Canada has conducted a small number of stakeholder consultations, the federal government has never polled federally authorized cannabis patients. This study is an attempt to learn more about patient needs, challenges and experiences with the MMAD.
Launched in the spring of 2007, Quality of Service Assessment of Health Canada's Medical Cannabis Policy and Program pairs a 50 question online survey addressing the personal experiences of patients in the federal cannabis program with 25 semi-guided interviews. Data gathering for this study took place from April 2007 to Jan. 2008, eventually garnering survey responses from 100 federally-authorized users, which at the time represented about 5% of the patients enrolled in Health Canada's program. This paper presents the results of the survey portion of the study.
8% of respondents report getting their cannabis from Health Canada, while 66% grow it for themselves. >50% report that they frequent compassion clubs or dispensaries, which remain illegal and unregulated in Canada. 81% of patients would chose certified organic methods of cultivation; >90% state that not all strains are equally effective at relieving symptoms, and 97% would prefer to obtain cannabis from a source where multiple strains are available. Of the 48 patients polled that had tried the Health Canada cannabis supply, >75% rank it as either "1" or "2" on a scale of 1-10 (with "1" being "very poor", and 10 being "excellent").
72% of respondents report they are either "somewhat" or "totally unsatisfied" with Canada's medical cannabis program. These survey results and relevant court decisions suggest that the MMAR are not meeting the needs of most of the nation's medical cannabis patient community. It is hoped this research will help inform policy changes that will better address the needs of Canada's critically and chronically ill medical cannabis patient population, including the integration of community-based dispensaries into this novel healthcare delivery model.
PMCID: PMC3285527  PMID: 22214382
medical cannabis; Marihuana Medical Access Regulations; Health Canada; cannabis dispensary
12.  Computational Model of the Insect Pheromone Transduction Cascade 
PLoS Computational Biology  2009;5(3):e1000321.
A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed.
Author Summary
All sensory neurons transduce their natural stimulus, whether a molecule, a photon, or a mechanical force, in an electrical current flowing through their sensory membrane via similar molecular and ionic mechanisms. Olfactory receptor neurons (ORNs), whose stimuli are volatile molecules, are no exception, including one of the best known: the exquisitely sensitive ORNs of male moths that detect the sexual pheromone released by conspecific females. We provide a detailed computational model of the intracellular molecular mechanisms at work in this ORN type. We describe qualitatively and quantitatively how the initial event, the interaction of pheromone molecules with specialized receptors at the ORN surface, is amplified through a sequence of linked biochemical and electrical events into a whole cell response, the receptor potential. We detail the respective roles of the upward activating reactions involving a cascade of ionic channels permeable to cations, chloride and potassium, their control by feedback inactivating mechanisms, and the central regulatory role of calcium. This computational model contributes to an integrated understanding of this signalling pathway, provides testable hypotheses, and suggests new experimental approaches.
PMCID: PMC2649447  PMID: 19300479
13.  Regulating compassion: an overview of Canada's federal medical cannabis policy and practice 
In response to a number of court challenges brought forth by Canadian patients who demonstrated that they benefited from the use of medicinal cannabis but remained vulnerable to arrest and persecution as a result of its status as a controlled substance, in 1999 Canada became the second nation in the world to initiate a centralized medicinal cannabis program. Over its six years of existence, this controversial program has been found unconstitutional by a number of courts, and has faced criticism from the medical establishment, law enforcement, as well as the patient/participants themselves.
This critical policy analysis is an evidence-based review of court decisions, government records, relevant studies and Access to Information Act data related to the three main facets of Health Canada's medicinal cannabis policy – the Marihuana Medical Access Division (MMAD); the Canadians Institute of Health Research Medical Marijuana Research Program; and the federal cannabis production and distribution program. This analysis also examines Canada's network of unregulated community-based dispensaries.
There is a growing body of evidence that Health Canada's program is not meeting the needs of the nation's medical cannabis patient community and that the policies of the Marihuana Medical Access Division may be significantly limiting the potential individual and public health benefits achievable though the therapeutic use of cannabis. Canada's community-based dispensaries supply medical cannabis to a far greater number of patients than the MMAD, but their work is currently unregulated by any level of government, leaving these organizations and their clients vulnerable to arrest and prosecution.
Any future success will depend on the government's ability to better assess and address the needs and legitimate concerns of end-users of this program, to promote and fund an expanded clinical research agenda, and to work in cooperation with community-based medical cannabis dispensaries in order to address the ongoing issue of safe and timely access to this herbal medicine.
PMCID: PMC2267789  PMID: 18226254

Results 1-14 (14)