PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (56)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b 
Objective
To identify microRNAs (miRNAs) regulated by anti-α4 integrin monoclonal antibody therapy (natalizumab) in the peripheral blood of patients with relapsing-remitting (RR) multiple sclerosis (MS) and to confirm their role in experimental settings in vivo.
Methods
In a longitudinal study of 17 RR-MS patients, we investigated blood miRNA expression profiles at baseline and after 1 year of natalizumab therapy by microarray technique and quantitative PCR validation. We compared the baseline expression profiles of these patients to those of 18 age- and sex-matched healthy controls. We confirmed the contribution of resulting candidate miRNAs in an animal model of MS, experimental autoimmune encephalomyelitis (EAE) induced by adoptive transfer of proteolipid protein (PLP)139–151-activated lymphocytes in SJL/J mice or by active immunization of miR-106a∼363-deficient C57BL/6 mice (or wildtype litter mates) with myelin oligodendrocyte glycoprotein (MOG)35–55.
Results
Our longitudinal analysis revealed that miR-18a, miR-20b, miR-29a, and miR-103 were upregulated and predominantly expressed by CD4+ T cells, whereas miR-326 was downregulated upon natalizumab treatment. A comparison of untreated RR-MS patients at baseline with healthy controls revealed that the four natalizumab-upregulated targets were initially downregulated in MS. All confirmed targets showed disease-dependent expression in splenocytes of mice suffering from EAE. Genetic deletion of the miRNA cluster miR-106a∼363 (containing natalizumab-regulated miR-20b) resulted in a more severe EAE course and an in vivo upregulation of the miR-20b target genes rorgt, stat3, and vegfa.
Interpretation
Our study indicates that natalizumab restores dysregulated miRNA patterns in MS and reveals the contribution of miR-20b in autoimmune demyelination in vivo.
doi:10.1002/acn3.152
PMCID: PMC4301674  PMID: 25642434
2.  miRNAs can be generally associated with human pathologies as exemplified for miR-144* 
BMC Medicine  2014;12(1):224.
Background
miRNA profiles are promising biomarker candidates for a manifold of human pathologies, opening new avenues for diagnosis and prognosis. Beyond studies that describe miRNAs frequently as markers for specific traits, we asked whether a general pattern for miRNAs across many diseases exists.
Methods
We evaluated genome-wide circulating profiles of 1,049 patients suffering from 19 different cancer and non-cancer diseases as well as unaffected controls. The results were validated on 319 individuals using qRT-PCR.
Results
We discovered 34 miRNAs with strong disease association. Among those, we found substantially decreased levels of hsa-miR-144* and hsa-miR-20b with AUC of 0.751 (95% CI: 0.703–0.799), respectively. We also discovered a set of miRNAs, including hsa-miR-155*, as rather stable markers, offering reasonable control miRNAs for future studies. The strong downregulation of hsa-miR-144* and the less variable pattern of hsa-miR-155* has been validated in a cohort of 319 samples in three different centers. Here, breast cancer as an additional disease phenotype not included in the screening phase has been included as the 20th trait.
Conclusions
Our study on 1,368 patients including 1,049 genome-wide miRNA profiles and 319 qRT-PCR validations further underscores the high potential of specific blood-borne miRNA patterns as molecular biomarkers. Importantly, we highlight 34 miRNAs that are generally dysregulated in human pathologies. Although these markers are not specific to certain diseases they may add to the diagnosis in combination with other markers, building a specific signature. Besides these dysregulated miRNAs, we propose a set of constant miRNAs that may be used as control markers.
Electronic supplementary material
The online version of this article (doi:10.1186/s12916-014-0224-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12916-014-0224-0
PMCID: PMC4268797  PMID: 25465851
Bioinformatics; Biomarker; Microarray; miRNA
3.  What makes a blood cell based miRNA expression pattern disease specific? - A miRNome analysis of blood cell subsets in lung cancer patients and healthy controls 
Oncotarget  2014;5(19):9484-9497.
There is evidence of blood-borne miRNA signatures for various human diseases. To dissect the origin of disease-specific miRNA expression in human blood, we separately analyzed the miRNome of different immune cell subtypes, each in lung cancer patients and healthy individuals. Each immune cell type revealed a specific miRNA expression pattern also dependinging on the cell origin, line of defense, and function. The overall expression pattern of each leukocyte subtype showed great similarities between patients and controls. However, for each cell subtype we identified miRNAs that were deregulated in lung cancer patients including hsa-miR-21, a well-known oncomiR associated with poor lung cancer prognosis that was up-regulated in all leukocyte subtype comparisons of cancer versus controls. While the miRNome of cells of the adaptive immune system allowed only a weak separation between patients and controls, cells of the innate immune system allowed perfect or nearly perfect classification. Leukocytes of lung cancer patients show a cancer-specific miRNA expression profile. Our data also show that cancer specific miRNA expression pattern of whole blood samples are not determined by a single cell type. The data indicate that additional blood components, like erythrocytes, platelets, or exosomes might contribute to the disease specificity of a miRNA signature.
PMCID: PMC4253448  PMID: 25344866
microRNA; leukocytes; lung cancer; microarray; cell separation
4.  The blood-borne miRNA signature of lung cancer patients is independent of histology but influenced by metastases 
Molecular Cancer  2014;13(1):202.
Objectives
In our previous studies we reported a panel of 24 miRNAs that allowed discrimination between blood of lung tumor patients independent of the histological subtype and blood of healthy controls with an accuracy of 95.4% [94.9%-95.9%]. Here, we now separately analyzed the miRNA expression in blood of non-small cell lung cancer (NSCLC), including squamous cell lung cancer and adenocarcinoma, and small cell lung cancer (SCLC) patients.
Patients and methods
In total, we examined the expression levels of 1,205 miRNAs in blood samples from 20 patients from each of the three histological groups and determined differentially expressed miRNAs between histological subtypes and metastatic and non-metastatic lung cancer. We further determined the overlap of miRNAs expressed in each subgroup with the 24-miRNA signature of lung tumor patients.
Results
Based on a raw p-value < 0.05, only 18 blood-borne miRNAs were differentially expressed between patients with adenocarcinoma and with squamous cell lung carcinoma, 11 miRNAs between adenocarcinoma and SCLC, and 2 between squamous cell lung carcinoma and SCLC. Likewise, the comparison based on a fold change of 1.5 did not reveal major differences of the blood-borne miRNA expression pattern between NSCLC and SCLC. In addition, we found a large overlap between the blood-borne miRNAs detected in the three histological subgroups and the previously described 24-miRNA signature that separates lung cancer patients form controls. We identified several miRNAs that allowed differentiating between metastatic and non-metastatic tumors both in blood of patients with adenocarcinoma and in blood of patients with SCLC.
Conclusion
There is a common miRNA expression pattern in blood of lung cancer patients that does not allow a reliable further subtyping into NSCLC or SCLC, or into adenocarcinoma and squamous cell lung cancer. The previously described 24-miRNA signature for lung cancer appears not primarily dependent on histological subtypes. However, metastatic adenocarcinoma and SCLC can be predicted with 75% accuracy.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-202) contains supplementary material, which is available to authorized users.
doi:10.1186/1476-4598-13-202
PMCID: PMC4156643  PMID: 25175044
MicroRNA; Microarray; Expression profile; Blood; Histology; Lung cancer; Small cell lung cancer; Non-small cell lung cancer; Adenocarcinoma; Squamous cell lung cancer; Metastasis
5.  Olfactory consciousness across disciplines 
doi:10.3389/fpsyg.2014.00931
PMCID: PMC4141278  PMID: 25202294
olfaction; smell; consciousness; theories of consciousness; perceptual consciousness
6.  Association Between Variants of PRDM1 and NDP52 and Crohn’s Disease, Based on Exome Sequencing and Functional Studies 
Gastroenterology  2013;145(2):339-347.
Background & Aims
Genome-wide association studies (GWASs) have identified 140 Crohn’s disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies.
Methods
We sequenced whole exomes of 42 unrelated subjects with Crohn’s disease (CD) and 5 healthy individuals (controls), and then filtered single-nucleotide variants by incorporating association results from meta-analyses of CD GWASs and in silico mutation effect prediction algorithms. We then genotyped 9348 patients with CD, 2868 with ulcerative colitis, and 14,567 controls, and associated variants analyzed in functional studies using materials from patients and controls and in vitro model systems.
Results
We identified rare missense mutations in PR domain-containing1 (PRDM1) and associated these with CD. These increased proliferation of T cells and secretion of cytokines upon activation, and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWASs, correlated with reduced expression of PRDM1 in ileal biopsies and peripheral blood mononuclear cells (combined P=1.6×0−8). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P=4.83×10−9). We found that this variant impairs the regulatory functions of NDP52 to inhibit NFκB activation of genes that regulate inflammation and affect stability of proteins in toll-like receptor pathways.
Conclusions
We have extended GWAS results and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWASs and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role for autophagy in pathogenesis of CD.
doi:10.1053/j.gastro.2013.04.040
PMCID: PMC3753067  PMID: 23624108
inflammatory bowel disease; whole-exome sequencing; complex disease
7.  Systematic permutation testing in GWAS pathway analyses: identification of genetic networks in dilated cardiomyopathy and ulcerative colitis 
BMC Genomics  2014;15:622.
Background
Genome wide association studies (GWAS) are applied to identify genetic loci, which are associated with complex traits and human diseases. Analogous to the evolution of gene expression analyses, pathway analyses have emerged as important tools to uncover functional networks of genome-wide association data. Usually, pathway analyses combine statistical methods with a priori available biological knowledge. To determine significance thresholds for associated pathways, correction for multiple testing and over-representation permutation testing is applied.
Results
We systematically investigated the impact of three different permutation test approaches for over-representation analysis to detect false positive pathway candidates and evaluate them on genome-wide association data of Dilated Cardiomyopathy (DCM) and Ulcerative Colitis (UC). Our results provide evidence that the gold standard - permuting the case–control status – effectively improves specificity of GWAS pathway analysis. Although permutation of SNPs does not maintain linkage disequilibrium (LD), these permutations represent an alternative for GWAS data when case–control permutations are not possible. Gene permutations, however, did not add significantly to the specificity. Finally, we provide estimates on the required number of permutations for the investigated approaches.
Conclusions
To discover potential false positive functional pathway candidates and to support the results from standard statistical tests such as the Hypergeometric test, permutation tests of case control data should be carried out. The most reasonable alternative was case–control permutation, if this is not possible, SNP permutations may be carried out. Our study also demonstrates that significance values converge rapidly with an increasing number of permutations. By applying the described statistical framework we were able to discover axon guidance, focal adhesion and calcium signaling as important DCM-related pathways and Intestinal immune network for IgA production as most significant UC pathway.
doi:10.1186/1471-2164-15-622
PMCID: PMC4223581  PMID: 25052024
DCM; UC; GWAS; Permutation tests; Pathway analysis
8.  Blood Born miRNAs Signatures that Can Serve as Disease Specific Biomarkers Are Not Significantly Affected by Overall Fitness and Exercise 
PLoS ONE  2014;9(7):e102183.
Blood born micro(mi)RNA expression pattern have been reported for various human diseases with signatures specific for diseases. To evaluate these biomarkers, it is mandatory to know possible changes of miRNA signatures in healthy individuals under different physiological conditions. We analyzed the miRNA expression in peripheral blood of elite endurance athletes and moderatly active controls. Blood drawing was done before and after exhaustive exercise in each group. After Benjamini-Hochberg adjustment we did not find any miRNA with significant p-values when comparing miRNA expression between the different groups. We found, however, 24 different miRNAs with an expression fold change of minimum 1.5 in at least one of the comparisons (athletes before vs after exercise, athletes before exercise vs controls and athletes after exercise vs controls). The observed changes are not significant in contrast to the expression changes of the blood born miRNA expression reported for many human diseases. These data support the idea of disease associated miRNA patterns useful as biomarkers that are not readily altered by physiological conditions.
doi:10.1371/journal.pone.0102183
PMCID: PMC4092108  PMID: 25010680
9.  The Missense of Smell: Functional Variability in the Human Odorant Receptor Repertoire 
Nature neuroscience  2013;17(1):114-120.
Humans have approximately 400 intact odorant receptors, but each individual has a unique set of genetic variations that lead to variation in olfactory perception. We used a heterologous assay to determine how often genetic polymorphisms in odorant receptors alter receptor function. We identified agonists for 18 odorant receptors and found that 63% of the odorant receptors we examined had polymorphisms that altered in vitro function. On average, two individuals differ functionally at over 30% of their odorant receptor alleles. To show that these in vitro results are relevant to olfactory perception, we verified that variations in OR10G4 genotype explain over 15% of the observed variation in perceived intensity and over 10% of the observed variation in perceived valence for the high affinity in vitro agonist guaiacol, but do not explain phenotypic variation for the lower affinity agonists vanillin and ethyl vanillin.
doi:10.1038/nn.3598
PMCID: PMC3990440  PMID: 24316890
10.  The human miRNA repertoire of different blood compounds 
BMC Genomics  2014;15(1):474.
Background
MiRNAs from body fluids gain more and more attraction as biomarker candidates. Besides serum, patterns from whole blood are increasingly considered as markers for human pathologies. Usually, the contribution of different cell types to the respective signature remains however unknown. In this study we provide insights into the human miRNome of different compounds of the blood including CD3, CD14, CD15, CD19, CD56 positive cells as well as exosomes.
Methods
We measured the miRNA repertoire for each cell type and whole blood for two individuals at three time points over the course of one year in order to provide evidence that the cell type miRNomes can be reproducibly detected.
Results
For measurements repeated after 24 hours we found on average correlation of 0.97, even after one year profiles still correlated with 0.96, demonstrating the enormous stability of the cell type specific miRNomes. Highest correlation was found for CD15 positive cells, exceeding Pearson correlation of 0.99. For exosomes a significantly higher variability of miRNA expression was detected. In order to estimate the complexity and variability of the cell type specific miRNomes, we generated profiles for all considered cell types in a total of seven unaffected individuals. While CD15 positive cells showed the most complex miRNome consisting of 328 miRNAs, we detected significantly less miRNAs (186, p = 1.5*10-5) in CD19 positive cells. Moreover, our analysis showed functional enrichment in many relevant categories such as onco-miRNAs and tumor miRNA suppressors. Interestingly, exosomes were enriched just for onco-miRNAs but not for miRNA tumor suppressors.
Conclusion
In sum, our results provide evidence that blood cell type specific miRNomes are very consistent between individuals and over time.
doi:10.1186/1471-2164-15-474
PMCID: PMC4076980  PMID: 24928098
miRNA; Exosome; Cell separation
11.  Population Genomic Analysis of Ancient and Modern Genomes Yields New Insights into the Genetic Ancestry of the Tyrolean Iceman and the Genetic Structure of Europe 
PLoS Genetics  2014;10(5):e1004353.
Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.
Author Summary
The analysis of the genome of the Tyrolean Iceman, a 5,300 year old mummy from Central Europe, revealed a surprising recent common ancestry with modern Sardinians for this ancient genome. However, this study was limited both by the availability of data from Sardinians and by a lack of genomic data from other ancient European samples. Here, we use genomic data from modern Sardinians and from ancient European individuals from different geographic regions and cultural contexts, to demonstrate that this ancestry component is shared among individuals associated with the onset of agriculture in Europe. Our results thus suggest that the Iceman's Sardinian ancestry actually reflects a more widespread genetic component related to the migration of people during the Neolithic transition in Central Europe.
doi:10.1371/journal.pgen.1004353
PMCID: PMC4014435  PMID: 24809476
12.  The evolutionary function of conscious information processing is revealed by its task-dependency in the olfactory system 
Although many responses to odorous stimuli are mediated without olfactory information being consciously processed, some olfactory behaviors require conscious information processing. I will here contrast situations in which olfactory information is processed consciously to situations in which it is processed non-consciously. This contrastive analysis reveals that conscious information processing is required when an organism is faced with tasks in which there are many behavioral options available. I therefore propose that it is the evolutionary function of conscious information processing to guide behaviors in situations in which the organism has to choose between many possible responses.
doi:10.3389/fpsyg.2014.00062
PMCID: PMC3913989  PMID: 24550876
olfaction; consciousness; evolution; task-dependency; information processing
13.  Quality-space theory in olfaction 
Quality-space theory (QST) explains the nature of the mental qualities distinctive of perceptual states by appeal to their role in perceiving. QST is typically described in terms of the mental qualities that pertain to color. Here we apply QST to the olfactory modalities. Olfaction is in various respects more complex than vision, and so provides a useful test case for QST. To determine whether QST can deal with the challenges olfaction presents, we show how a quality space (QS) could be constructed relying on olfactory perceptible properties and the olfactory mental qualities then defined by appeal to that QS of olfactory perceptible properties. We also consider how to delimit the olfactory QS from other modalities. We further apply QST to the role that experience plays in refining our olfactory discriminative abilities and the occurrence of olfactory mental qualities in non-conscious olfactory states. QST is shown to be fully applicable to and useful for understanding the complex domain of olfaction.
doi:10.3389/fpsyg.2014.00001
PMCID: PMC3893576  PMID: 24474945
quality-space theory; quality-space; olfaction; mental qualities; phenomenology; perceptual qualities; consciousness
14.  Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones 
Annals of Botany  2012;110(3):615-627.
Background and Aims
In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae).
Methods
An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe.
Key Results
Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes.
Conclusions
The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.
doi:10.1093/aob/mcs120
PMCID: PMC3400448  PMID: 22730023
Assortative mating; Asteraceae; Centaurea stoebe; cpDNA; cytotype coexistence; disturbance; flow cytometry; microsatellites; polyploidy; reproductive isolation; triploid block
15.  A blood based 12-miRNA signature of Alzheimer disease patients 
Genome Biology  2013;14(7):R78.
Background
Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples.
Results
We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies.
Conclusions
The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases.
doi:10.1186/gb-2013-14-7-r78
PMCID: PMC4053778  PMID: 23895045
Alzheimer disease; miRNA; biomarker; next-generation sequencing; quantitative Real Time PCR
16.  Hidden consequences of olfactory dysfunction: a patient report series 
Background
The negative consequences of olfactory dysfunction for the quality of life are not widely appreciated and the condition is therefore often ignored or trivialized.
Methods
1,000 patients with olfactory dysfunction participated in an online study by submitting accounts of their subjective experiences of how they have been affected by their condition. In addition, they were given the chance to answer 43 specific questions about the consequences of their olfactory dysfunction.
Results
Although there are less practical problems associated with impaired or distorted odor perception than with impairments in visual or auditory perception, many affected individuals report experiencing olfactory dysfunction as a debilitating condition. Smell loss-induced social isolation and smell loss-induced anhedonia can severely affect quality of life.
Conclusions
Olfactory dysfunction is a serious condition for those affected by it and it deserves more attention from doctors who treat affected patients as well as from scientist who research treatment options.
doi:10.1186/1472-6815-13-8
PMCID: PMC3733708  PMID: 23875929
Olfaction; Quality of life; Anosmia; Phantosmia; Parosmia; Anhedonia
17.  Intestinal Salmonella typhimurium Infection Leads to miR-29a Induced Caveolin 2 Regulation 
PLoS ONE  2013;8(6):e67300.
Background
Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model.
Methodology/Principal Findings
After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells.
Conclusions/Significance
Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.
doi:10.1371/journal.pone.0067300
PMCID: PMC3691122  PMID: 23826261
18.  Myasthenia Gravis: Analysis of Serum Autoantibody Reactivities to 1827 Potential Human Autoantigens by Protein Macroarrays 
PLoS ONE  2013;8(3):e58095.
Background
Myasthenia gravis is a disorder of neuromuscular transmission associated with autoantibodies against the nicotinic acetylcholine receptor. We have previously developed a customized protein macroarray comprising 1827 potential human autoantigens, which permitted to discriminate sera of patients with different cancers from sera of healthy controls, but has not yet been evaluated in antibody-mediated autoimmune diseases.
Objective
To determine whether autoantibody signatures obtained by protein macroarray separate sera of patients with myasthenia gravis from healthy controls.
Methods
Sera of patients with acetylcholine receptor antibody-positive myasthenia gravis (n = 25) and healthy controls (n = 32) were analyzed by protein macroarrays comprising 1827 peptide clones.
Results
Autoantibody signatures did not separate patients with myasthenia gravis from controls with sufficient sensitivity, specificity, and accuracy. Intensity values of one antigen (poly A binding protein cytoplasmic 1, p = 0.0045) were higher in patients with myasthenia gravis, but the relevance of this and two further antigens, 40S ribosomal protein S13 (20.8% vs. 0%, p = 0.011) and proteasome subunit alpha type 1 (25% vs. 3.1%, p = 0.035), which were detected more frequently by myasthenia gravis than by control sera, currently remains uncertain.
Conclusion
Seroreactivity profiles of patients with myasthenia gravis detected by a customized protein macroarray did not allow discrimination from healthy controls, compatible with the notion that the autoantibody response in myasthenia gravis is highly focussed against the acetylcholine receptor.
doi:10.1371/journal.pone.0058095
PMCID: PMC3587426  PMID: 23483977
19.  Olfactory Processing, Sex Effects and Heterogeneity in Schizophrenia 
Schizophrenia Research  2011;135(1-3):144-151.
Introduction
Smell identification deficits are associated with negative symptoms in schizophrenia, particularly in males. Far less information is known about the relationship of odor detection sensitivity (acuity) and negative symptoms in schizophrenia, and currently there is a dearth in sex-stratified research specifically examining odor sensitivity and smell identification.
Methods
Fifty-eight individuals with schizophrenia and 42 healthy comparison subjects were assessed on tests of odor sensitivity, smell identification and cognition. Negative symptoms were assessed with the Positive and Negative Syndrome Scale and the Schedule for the Deficit Syndrome.
Results
In healthy males, increased odor detection sensitivity predicted better smell identification scores. In contrast, male schizophrenia patients showed a significant inverse relationship, in which increased odor sensitivity predicted lower smell identification scores. Odor sensitivity and smell identification were unrelated in both schizophrenia and healthy females. Olfactory processing was strongly linked to negative symptoms, but the relationships differed by sex. Emotional expression deficits were related to odor detection hypersensitivity in female patients, whereas smell identification deficits predicted these emotional deficits in male cases.
Conclusion
Sex differences in olfactory functioning were identified in healthy subjects and in schizophrenia patients. Smell identification was related to negative symptoms in males with schizophrenia, whereas odor detection sensitivity predicted these features in females. Sex differences should be considered in future analyses that employ odor stimuli for neuropsychiatric research.
doi:10.1016/j.schres.2011.11.025
PMCID: PMC3288877  PMID: 22177347
Schizophrenia; sex differences; negative symptoms; odor sensitivity; smell identification
20.  Alterations in cardiac DNA methylation in human dilated cardiomyopathy 
EMBO Molecular Medicine  2013;5(3):413-429.
Dilated cardiomyopathies (DCM) show remarkable variability in their age of onset, phenotypic presentation, and clinical course. Hence, disease mechanisms must exist that modify the occurrence and progression of DCM, either by genetic or epigenetic factors that may interact with environmental stimuli. In the present study, we examined genome-wide cardiac DNA methylation in patients with idiopathic DCM and controls. We detected methylation differences in pathways related to heart disease, but also in genes with yet unknown function in DCM or heart failure, namely Lymphocyte antigen 75 (LY75), Tyrosine kinase-type cell surface receptor HER3 (ERBB3), Homeobox B13 (HOXB13) and Adenosine receptor A2A (ADORA2A). Mass-spectrometric analysis and bisulphite-sequencing enabled confirmation of the observed DNA methylation changes in independent cohorts. Aberrant DNA methylation in DCM patients was associated with significant changes in LY75 and ADORA2A mRNA expression, but not in ERBB3 and HOXB13. In vivo studies of orthologous ly75 and adora2a in zebrafish demonstrate a functional role of these genes in adaptive or maladaptive pathways in heart failure.
doi:10.1002/emmm.201201553
PMCID: PMC3598081  PMID: 23341106
biomarker; dilated cardiomyopathy; DNA methylation; epigenetics; heart failure
21.  Next Generation Gene Synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device 
Nature biotechnology  2010;28(12):1291-1294.
The setup of synthetic biological systems involving millions of bases is still limited by the required high quality of synthetic DNA. Important drivers to further open up the field are the accuracy and scale of chemical DNA synthesis and the downstream processing of longer DNA assembled from short fragments. We developed a new, highly parallel and miniaturized method for the preparation of high quality DNA termed “Megacloning” by using Next Generation Sequencing (NGS) technology in a preparative way. We demonstrate our method by processing both conventional and microarray-derived DNA oligonucleotides in combination with a bead-based high throughput pyrosequencing platform, gaining a 500-fold error reduction for microarray oligonucleotides in a first embodiment. We also show the assembly of synthetic genes as part of the Megacloning process. In principle, up to millions of DNA fragments can be sequenced, characterized and sorted in a single Megacloner run, enabling many new applications.
doi:10.1038/nbt.1710
PMCID: PMC3579223  PMID: 21113166
22.  An olfactory demography of a diverse metropolitan population 
BMC Neuroscience  2012;13:122.
Background
Human perception of the odour environment is highly variable. People vary both in their general olfactory acuity as well as in if and how they perceive specific odours. In recent years, it has been shown that genetic differences contribute to variability in both general olfactory acuity and the perception of specific odours. Odour perception also depends on other factors such as age and gender. Here we investigate the influence of these factors on both general olfactory acuity and on the perception of 66 structurally and perceptually different odours in a diverse subject population.
Results
We carried out a large human olfactory psychophysics study of 391 adult subjects in metropolitan New York City, an ethnically and culturally diverse North American metropolis. 210 of the subjects were women and the median age was 34.6 years (range 19–75). We recorded ~2,300 data points per subject to obtain a comprehensive perceptual phenotype, comprising multiple perceptual measures of 66 diverse odours. We show that general olfactory acuity correlates with gender, age, race, smoking habits, and body type. Young, female, non-smoking subjects had the highest average olfactory acuity. Deviations from normal body type in either direction were associated with decreased olfactory acuity. Beyond these factors we also show that, surprisingly, there are many odour-specific influences of race, age, and gender on olfactory perception. We show over 100 instances in which the intensity or pleasantness perception of an odour is significantly different between two demographic groups.
Conclusions
These data provide a comprehensive snapshot of the olfactory sense of a diverse population. Olfactory acuity in the population is most strongly influenced by age, followed by gender. We also show a large number of diverse correlations between demographic factors and the perception of individual odours that may reflect genetic differences as well as different prior experiences with these odours between demographic groups.
doi:10.1186/1471-2202-13-122
PMCID: PMC3493268  PMID: 23046643
Olfaction; Psychophysics; Demographics
23.  From next-generation sequencing alignments to accurate comparison and validation of single-nucleotide variants: the pibase software 
Nucleic Acids Research  2012;41(1):e16.
Scientists working with single-nucleotide variants (SNVs), inferred by next-generation sequencing software, often need further information regarding true variants, artifacts and sequence coverage gaps. In clinical diagnostics, e.g. SNVs must usually be validated by visual inspection or several independent SNV-callers. We here demonstrate that 0.5–60% of relevant SNVs might not be detected due to coverage gaps, or might be misidentified. Even low error rates can overwhelm the true biological signal, especially in clinical diagnostics, in research comparing healthy with affected cells, in archaeogenetic dating or in forensics. For these reasons, we have developed a package called pibase, which is applicable to diploid and haploid genome, exome or targeted enrichment data. pibase extracts details on nucleotides from alignment files at user-specified coordinates and identifies reproducible genotypes, if present. In test cases pibase identifies genotypes at 99.98% specificity, 10-fold better than other tools. pibase also provides pair-wise comparisons between healthy and affected cells using nucleotide signals (10-fold more accurately than a genotype-based approach, as we show in our case study of monozygotic twins). This comparison tool also solves the problem of detecting allelic imbalance within heterozygous SNVs in copy number variation loci, or in heterogeneous tumor sequences.
doi:10.1093/nar/gks836
PMCID: PMC3592472  PMID: 22965131
24.  Improving mapping and SNP-calling performance in multiplexed targeted next-generation sequencing 
BMC Genomics  2012;13:417.
Background
Compared to classical genotyping, targeted next-generation sequencing (tNGS) can be custom-designed to interrogate entire genomic regions of interest, in order to detect novel as well as known variants. To bring down the per-sample cost, one approach is to pool barcoded NGS libraries before sample enrichment. Still, we lack a complete understanding of how this multiplexed tNGS approach and the varying performance of the ever-evolving analytical tools can affect the quality of variant discovery. Therefore, we evaluated the impact of different software tools and analytical approaches on the discovery of single nucleotide polymorphisms (SNPs) in multiplexed tNGS data. To generate our own test model, we combined a sequence capture method with NGS in three experimental stages of increasing complexity (E. coli genes, multiplexed E. coli, and multiplexed HapMap BRCA1/2 regions).
Results
We successfully enriched barcoded NGS libraries instead of genomic DNA, achieving reproducible coverage profiles (Pearson correlation coefficients of up to 0.99) across multiplexed samples, with <10% strand bias. However, the SNP calling quality was substantially affected by the choice of tools and mapping strategy. With the aim of reducing computational requirements, we compared conventional whole-genome mapping and SNP-calling with a new faster approach: target-region mapping with subsequent ‘read-backmapping’ to the whole genome to reduce the false detection rate. Consequently, we developed a combined mapping pipeline, which includes standard tools (BWA, SAMtools, etc.), and tested it on public HiSeq2000 exome data from the 1000 Genomes Project. Our pipeline saved 12 hours of run time per Hiseq2000 exome sample and detected ~5% more SNPs than the conventional whole genome approach. This suggests that more potential novel SNPs may be discovered using both approaches than with just the conventional approach.
Conclusions
We recommend applying our general ‘two-step’ mapping approach for more efficient SNP discovery in tNGS. Our study has also shown the benefit of computing inter-sample SNP-concordances and inspecting read alignments in order to attain more confident results.
doi:10.1186/1471-2164-13-417
PMCID: PMC3563481  PMID: 22913592
Two-stage mapping; Read-backmapping; Software performance; SNP discovery; Multiplexed targeted next-generation sequencing
25.  Different noses for different mice and men 
BMC Biology  2012;10:75.
Chemosensory receptor genes encode G protein-coupled receptors with which animals sense their chemical environment. The large number of chemosensory receptor genes in the genome and their extreme genetic variability pose unusual challenges for understanding their evolution and function. Two articles in BMC Genomics explore the genetic variation of chemosensory receptor gene repertoires in humans and mice and provide unparalleled insight into the causes and consequences of this variability.
See research articles http://www.biomedcentral.com/1471-2164/13/414 and http://www.biomedcentral.com/1471-2164/13/415
doi:10.1186/1741-7007-10-75
PMCID: PMC3424162  PMID: 22908960

Results 1-25 (56)