Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("mayo, osier")
1.  A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration 
Journal of Cell Science  2015;128(24):4601-4614.
Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin–microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease.
Summary: Fascin associates directly with microtubules independently of F-actin binding, and this contributes to microtubule dynamics, adhesion assembly and cell migration.
PMCID: PMC4696496  PMID: 26542021
Fascin; Cytoskeleton; Actin; Microtubule; Focal adhesion; Migration; Focal adhesion kinase
2.  An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments 
Microelectronic Engineering  2015;144:42-45.
Graphical abstract
•A microfluidic device to study cell and nuclear deformation during translocation.•Adherent cells protrude their cytoplasm regardless of the channel cross-section.•The nucleus acts as a limiting factor when the channel area is below 7 × 5 μm2.
During metastasis, cancerous cells leave the primary tumour, pass into the circulatory system, and invade into new tissues. To migrate through the wide variety of environments they encounter, the cells must be able to remodel their cell shape efficiently to squeeze through small gaps in the extracellular matrix or extravasate into the blood stream or lymphatic system. Several studies have shown that the nucleus is the main limiting factor to migration through small gaps (Wolf et al., 2013; Harada et al., 2014; Mak et al., 2013). To understand the physical limits of cancer cell translocation in confined environments, we have fabricated a microfluidic device to study their ability to adapt their nuclear and cellular shape when passing through small gaps. The device is open access for ease of use and enables examination of the effect of different levels of spatial confinement on cell behaviour and morphology simultaneously. The results show that increasing cell confinement decreases the ability of cells to translocate into small gaps and that cells cannot penetrate into the microchannels below a threshold cross-section.
PMCID: PMC4567073  PMID: 26412914
Microfluidics; Cell deformation; Breast cancer cells; Multilayer photolithography
3.  Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture 
Molecular Biology of the Cell  2015;26(10):1901-1917.
Fascin, a conserved actin-bundling protein, is not only cytoplasmic but also localizes to the nucleus and nuclear periphery in both Drosophila and mammalian cell contexts. In Drosophila, prostaglandin signaling regulates this localization. In addition, Fascin plays a critical role in nucleolar architecture in both Drosophila and mammalian cells.
Fascin, a highly conserved actin-bundling protein, localizes and functions at new cellular sites in both Drosophila and multiple mammalian cell types. During Drosophila follicle development, in addition to being cytoplasmic, Fascin is in the nuclei of the germline-derived nurse cells during stages 10B–12 (S10B–12) and at the nuclear periphery during stage 13 (S13). This localization is specific to Fascin, as other actin-binding proteins, Villin and Profilin, do not exhibit the same subcellular distribution. In addition, localization of fascin1 to the nucleus and nuclear periphery is observed in multiple mammalian cell types. Thus the regulation and function of Fascin at these new cellular locations is likely to be highly conserved. In Drosophila, loss of prostaglandin signaling causes a global reduction in nuclear Fascin and a failure to relocalize to the nuclear periphery. Alterations in nuclear Fascin levels result in defects in nucleolar morphology in both Drosophila follicles and cultured mammalian cells, suggesting that nuclear Fascin plays an important role in nucleolar architecture. Given the numerous roles of Fascin in development and disease, including cancer, our novel finding that Fascin has functions within the nucleus sheds new light on the potential roles of Fascin in these contexts.
PMCID: PMC4436834  PMID: 25808493
5.  Fascin promotes filopodia formation independent of its role in actin bundling 
The Journal of Cell Biology  2012;197(4):477-486.
Mutation of a critical residue of fascin eliminates the protein’s actin-bundling activity but maintains its positive role in filopodia formation
Fascin is an evolutionarily conserved actin-binding protein that plays a key role in forming filopodia. It is widely thought that this function involves fascin directly bundling actin filaments, which is controlled by an N-terminal regulatory serine residue. In this paper, by studying cellular processes in Drosophila melanogaster that require fascin activity, we identify a regulatory residue within the C-terminal region of the protein (S289). Unexpectedly, although mutation (S289A) of this residue disrupted the actin-bundling capacity of fascin, fascin S289A fully rescued filopodia formation in fascin mutant flies. Live imaging of migrating macrophages in vivo revealed that this mutation restricted the localization of fascin to the distal ends of filopodia. The corresponding mutation of human fascin (S274) similarly affected its interaction with actin and altered filopodia dynamics within carcinoma cells. These data reveal an evolutionarily conserved role for this regulatory region and unveil a function for fascin, uncoupled from actin bundling, at the distal end of filopodia.
PMCID: PMC3352952  PMID: 22564415
6.  A novel Rho-dependent pathway that drives interaction of fascin-1 with p-Lin-11/Isl-1/Mec-3 kinase (LIMK) 1/2 to promote fascin-1/actin binding and filopodia stability 
BMC Biology  2012;10:72.
Fascin-1 is an actin crosslinking protein that is important for the assembly of cell protrusions in neurons, skeletal and smooth muscle, fibroblasts, and dendritic cells. Although absent from most normal adult epithelia, fascin-1 is upregulated in many human carcinomas, and is associated with poor prognosis because of its promotion of carcinoma cell migration, invasion, and metastasis. Rac and Cdc42 small guanine triphosphatases have been identified as upstream regulators of the association of fascin-1 with actin, but the possible role of Rho has remained obscure. Additionally, experiments have been hampered by the inability to measure the fascin-1/actin interaction directly in intact cells. We investigated the hypothesis that fascin-1 is a functional target of Rho in normal and carcinoma cells, using experimental approaches that included a novel fluorescence resonance energy transfer (FRET)/fluorescence lifetime imaging (FLIM) method to measure the interaction of fascin-1 with actin.
Rho activity modulates the interaction of fascin-1 with actin, as detected by a novel FRET method, in skeletal myoblasts and human colon carcinoma cells. Mechanistically, Rho regulation depends on Rho kinase activity, is independent of the status of myosin II activity, and is not mediated by promotion of the fascin/PKC complex. The p-Lin-11/Isl-1/Mec-3 kinases (LIMK), LIMK1 and LIMK2, act downstream of Rho kinases as novel binding partners of fascin-1, and this complex regulates the stability of filopodia.
We have identified a novel activity of Rho in promoting a complex between fascin-1 and LIMK1/2 that modulates the interaction of fascin-1 with actin. These data provide new mechanistic insight into the intracellular coordination of contractile and protrusive actin-based structures. During the course of the study, we developed a novel FRET method for analysis of the fascin-1/actin interaction, with potential general applicability for analyzing the activities of actin-binding proteins in intact cells.
PMCID: PMC3488970  PMID: 22883572

Results 1-7 (7)