PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment 
Synaptic vesicle exocytosis is mediated by the vesicular Ca2+-sensor synaptotagmin-1. Synaptotagmin-1 interacts with the SNARE protein syntaxin-1A and with acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). However, it is unclear how these interactions contribute to triggering membrane fusion. Using both PC12 cells from Rattus norvegicus and artificial supported bilayers we now show that synaptotagmin-1 interacts with the polybasic linker region of syntaxin-1A independent of Ca2+ via PIP2. This interaction allows both Ca2+-binding sites of synaptotagmin-1 to bind to phosphatidylserine (PS) in the vesicle membrane upon Ca2+-triggering. We determined the crystal structure of the C2B-domain of synaptotagmin-1 bound to phosphoserine, allowing for developing a high-resolution model of synaptotagmin bridging two different membranes. Our results suggest that PIP2 clusters organized by syntaxin-1 act as molecular beacons for vesicle docking, with the subsequent Ca2+-influx bringing the vesicle membrane close enough for membrane fusion.
doi:10.1038/nsmb.2570
PMCID: PMC3676452  PMID: 23665582
2.  Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis 
BMC Biology  2012;10:71.
Background
Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes.
Results
Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory.
Conclusions
Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
doi:10.1186/1741-7007-10-71
PMCID: PMC3425129  PMID: 22873208
Organelles; G proteins; humans; last eukaryotic common ancestor
3.  Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis 
The Journal of Cell Biology  2010;188(3):401-413.
Time-resolved measurements of exocytosis identify a domain of the SNARE complex required to keep vesicles readily releasable.
Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion.
doi:10.1083/jcb.200907018
PMCID: PMC2819690  PMID: 20142423
4.  Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi 
Background
In eukaryotic cells, directional transport between different compartments of the endomembrane system is mediated by vesicles that bud from a donor organelle and then fuse with an acceptor organelle. A family of integral membrane proteins, termed soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, constitute the key machineries of these different membrane fusion events. Over the past 30 years, the yeast Saccharomyces cerevisiae has served as a powerful model organism for studying the organization of the secretory and endocytic pathways, and a few years ago, its entire set of SNAREs was compiled.
Results
Here, we make use of the increasing amount of genomic data to investigate the history of the SNARE family during fungi evolution. Moreover, since different SNARE family members are thought to demarcate different organelles and vesicles, this approach allowed us to compare the organization of the endomembrane systems of yeast and animal cells. Our data corroborate the notion that fungi generally encompass a relatively simple set of SNARE proteins, mostly comprising the SNAREs of the proto-eukaryotic cell. However, all fungi contain a novel soluble SNARE protein, Vam7, which carries an N-terminal PX-domain that acts as a phosphoinositide binding module. In addition, the points in fungal evolution, at which lineage-specific duplications and diversifications occurred, could be determined. For instance, the endosomal syntaxins Pep12 and Vam3 arose from a gene duplication that occurred within the Saccharomycotina clade.
Conclusion
Although the SNARE repertoire of baker's yeast is highly conserved, our analysis reveals that it is more deviated than the ones of basal fungi. This highlights that the trafficking pathways of baker's yeast are not only different to those in animal cells but also are somewhat different to those of many other fungi.
doi:10.1186/1471-2148-9-19
PMCID: PMC2639358  PMID: 19166604
5.  A Novel Site of Action for α-SNAP in the SNARE Conformational Cycle Controlling Membrane Fusion 
Molecular Biology of the Cell  2008;19(3):776-784.
Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of α-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of α-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of α-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of α-SNAP potently inhibits Ca2+-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an α-SNAP mutant defective in NSF activation is used. We conclude that α-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for α-SNAP in the SNARE cycle that drives exocytotic membrane fusion.
doi:10.1091/mbc.E07-05-0498
PMCID: PMC2262999  PMID: 18094056
6.  An Elaborate Classification of SNARE Proteins Sheds Light on the Conservation of the Eukaryotic Endomembrane System 
Molecular Biology of the Cell  2007;18(9):3463-3471.
Proteins of the SNARE (soluble N-ethylmalemide–sensitive factor attachment protein receptor) family are essential for the fusion of transport vesicles with an acceptor membrane. Despite considerable sequence divergence, their mechanism of action is conserved: heterologous sets assemble into membrane-bridging SNARE complexes, in effect driving membrane fusion. Within the cell, distinct functional SNARE units are involved in different trafficking steps. These functional units are conserved across species and probably reflect the conservation of the particular transport step. Here, we have systematically analyzed SNARE sequences from 145 different species and have established a highly accurate classification for all SNARE proteins. Principally, all SNAREs split into four basic types, reflecting their position in the four-helix bundle complex. Among these four basic types, we established 20 SNARE subclasses that probably represent the original repertoire of a eukaryotic cenancestor. This repertoire has been modulated independently in different lines of organisms. Our data are in line with the notion that the ur-eukaryotic cell was already equipped with the various compartments found in contemporary cells. Possibly, the development of these compartments is closely intertwined with episodes of duplication and divergence of a prototypic SNARE unit.
doi:10.1091/mbc.E07-03-0193
PMCID: PMC1951749  PMID: 17596510
7.  Determinants of Synaptobrevin Regulation in Membranes 
Molecular Biology of the Cell  2007;18(6):2037-2046.
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.
doi:10.1091/mbc.E07-01-0049
PMCID: PMC1877092  PMID: 17360966
8.  Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain 
Molecular Biology of the Cell  2005;16(12):5675-5685.
The essential membrane fusion apparatus in mammalian cells, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consists of four α-helices formed by three proteins: SNAP-25, syntaxin 1, and synaptobrevin 2. SNAP-25 contributes two helices to the complex and is targeted to the plasma membrane by palmitoylation of four cysteines in the linker region. It is alternatively spliced into two forms, SNAP-25a and SNAP-25b, differing by nine amino acids substitutions. When expressed in chromaffin cells from SNAP-25 null mice, the isoforms support different levels of secretion. Here, we investigated the basis of that different secretory phenotype. We found that two nonconservative substitutions in the N-terminal SNARE domain and not the different localization of one palmitoylated cysteine cause the functional difference between the isoforms. Biochemical and molecular dynamic simulation experiments revealed that the two substitutions do not regulate secretion by affecting the property of SNARE complex itself, but rather make the SNAP-25b-containing SNARE complex more available for the interaction with accessory factor(s).
doi:10.1091/mbc.E05-07-0595
PMCID: PMC1289412  PMID: 16195346

Results 1-8 (8)