PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  A Conserved START Domain Coenzyme Q-binding Polypeptide is Required for Efficient Q Biosynthesis, Respiratory Electron Transport, and Antioxidant Function in Saccharomyces cerevisiae 
Biochimica et biophysica acta  2012;1831(4):776-791.
Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.
doi:10.1016/j.bbalip.2012.12.007
PMCID: PMC3909687  PMID: 23270816
Ubiquinone; yeast mitochondria; lipid binding; steroidogenic acute regulatory protein; respiratory electron transport; lipid autoxidation
2.  Restoring de novo Coenzyme Q biosynthesis in Caenorhabditis elegans coq-3 mutants yields profound rescue compared to exogenous Coenzyme Q supplementation 
Gene  2012;506(1):106-116.
Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 E. coli, but their second generation homozygous progeny do not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5′ and 3′, respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q10. Here we show that the Q9 content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q9 content, indicating that primary defect in both is limited to coq-3. The limited response of the coq-3 mutants to dietary supplementation with Q provides a powerful model to probe the effectiveness of exogenous Q supplementation as compared to restoration of de novo Q biosynthesis.
doi:10.1016/j.gene.2012.06.023
PMCID: PMC3437764  PMID: 22735617
dietary supplements; fertility; methyltransferase; mitochondria; operon; ubiquinone
3.  Small Amounts of Isotope-reinforced Polyunsaturated Fatty Acids Suppress Lipid Autoxidation 
Free radical biology & medicine  2012;53(4):893-906.
Polyunsaturated fatty acids (PUFAs) undergo autoxidation and generate reactive carbonyl compounds that are toxic to cells and associated with apoptotic cell death, age-related neurodegenerative diseases, and atherosclerosis. PUFA autoxidation is initiated by the abstraction of bis-allylic hydrogen atoms. Replacement of the bis-allylic hydrogen atoms with deuterium atoms (termed site-specific isotope-reinforcement) arrests PUFA autoxidation due to the isotope effect. Kinetic competition experiments show that the kinetic isotope effect for the propagation rate constant of Lin autoxidation compared to that of 11,11-D2-Lin is 12.8 ± 0.6. We investigate the effects of different isotope-reinforced PUFAs and natural PUFAs on the viability of coenzyme Q-deficient Saccharomyces cerevisiae coq mutants and wild-type yeast subjected to copper stress. Cells treated with a C11-BODIPY fluorescent probe to monitor lipid oxidation products show that lipid peroxidation precedes the loss of viability due to H-PUFA toxicity. We show that replacement of just one bis-allylic hydrogen atom with deuterium is sufficient to arrest lipid autoxidation. In contrast, PUFAs reinforced with two deuterium atoms at mono-allylic sites remain susceptible to autoxidation. Surprisingly, yeast treated with a mixture of approximately 20%:80% isotope-reinforced D-PUFA: natural H-PUFA are protected from lipid autoxidation-mediated cell killing. The findings reported here show that inclusion of only a small fraction of PUFAs deuterated at the bis-allylic sites is sufficient to profoundly inhibit the chain reaction of non-deuterated PUFAs in yeast.
doi:10.1016/j.freeradbiomed.2012.06.004
PMCID: PMC3437768  PMID: 22705367
C11-BODIPY; chain reaction; coenzyme Q; kinetic isotope effect; lipid autoxidation; oxidative stress; polyunsaturated fatty acid; ubiquinone
4.  Expression of the Human Atypical Kinase ADCK3 Rescues Coenzyme Q Biosynthesis and Phosphorylation of Coq Polypeptides in Yeast coq8 Mutants 
Biochimica et biophysica acta  2011;1811(5):348-360.
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1) encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants, and show that unlike the coq8 null mutant, each maintained normal steady state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q6. The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.
doi:10.1016/j.bbalip.2011.01.009
PMCID: PMC3075350  PMID: 21296186
coenzyme Q; ubiquinone; Saccharomyces cerevisiae; mitochondria; lipid metabolism; protein kinase
5.  Isotope-Reinforced Polyunsaturated Fatty Acids Protect Yeast Cells from Oxidative Stress 
Free radical biology & medicine  2010;50(1):130-138.
The facile abstraction of bis-allylic hydrogens from polyunsaturated fatty acids (PUFAs) is the hallmark chemistry responsible for initiation and propagation of autoxidation reactions. The products of these autoxidation reactions can form cross-links to other membrane components, damage proteins and nucleic acid. We report that PUFAs deuterated at bis-allylic sites are much more resistant to autoxidation reactions, due to the isotope effect. This is shown using coenzyme Q-deficient Saccharomyces cerevisiae coq mutants with defects in biosynthesis of coenzyme Q (Q). Q functions in respiratory energy metabolism and also functions as a lipid-soluble antioxidant. Yeast coq mutants incubated in the presence of the PUFAs α-linolenic or linoleic acid exhibit 99% loss of colony formation after four hours, demonstrating a profound loss of viability. In contrast, coq mutants treated with monounsaturated oleic acid or with one of the deuterated PUFAs:11,11-D2-Linoleic or 11,11,14,14-D4-αLinolenic retain viability similar to wild-type yeast. Deuterated PUFAs also confer protection to wild-type yeast subjected to heat stress. These results indicate that isotope-reinforced PUFAs are stabilized compared to standard PUFAs, and they protect coq mutants and wild-type yeast cells against the toxic effects of lipid autoxidation products. These findings suggest new approaches to controlling ROS-inflicted cellular damage and oxidative stress.
doi:10.1016/j.freeradbiomed.2010.10.690
PMCID: PMC3014413  PMID: 20955788
Isotope Effect; Lipid Autoxidation; Oxidative Stress; Coenzyme Q; Ubiquinone
6.  Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q 
Aging cell  2008;7(3):291-304.
Summary
Coenzyme Qn is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q8 have a significant lifespan extension when compared to C. elegans fed a standard ‘Q-replete’ E. coli diet. Here we examine possible mechanisms for the lifespan extension caused by the Q-less E. coli diet. A bioassay for Q uptake shows that a water-soluble formulation of Q10 is effectively taken up by both clk-1 mutant and wild-type nematodes, but does not reverse lifespan extension mediated by the Q-less E. coli diet, indicating that lifespan extension is not due to the absence of dietary Q per se. The enhanced longevity mediated by the Q-less E. coli diet cannot be attributed to dietary restriction, different Qn isoforms, reduced pathogenesis or slowed growth of the Q-less E. coli, and in fact requires E. coli viability. Q-less E. coli have defects in respiratory metabolism. C. elegans fed Q-replete E. coli mutants with similarly impaired respiratory metabolism due to defects in complex V also show a pronounced lifespan extension, although not as dramatic as those fed the respiratory deficient Q-less E. coli diet. The data suggest that feeding respiratory incompetent E. coli, whether Q-less or Q-replete, produces a robust life extension in wild-type C. elegans. We believe that the fermentation-based metabolism of the E. coli diet is an important parameter of C. elegans longevity.
doi:10.1111/j.1474-9726.2008.00378.x
PMCID: PMC3104051  PMID: 18267002
aging; Caenorhabditis elegans; clk-1; coenzyme Q or ubiquinone; dietary restriction; respiratory defective Escherichia coli
7.  The Yeast Coq4 Polypeptide Organizes a Mitochondrial Protein Complex Essential for Coenzyme Q Biosynthesis 
Biochimica et biophysica acta  2008;1791(1):69-75.
Summary
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis.
doi:10.1016/j.bbalip.2008.10.006
PMCID: PMC2627766  PMID: 19022396
Saccharomyces cerevisiae; Ubiquinone; Coenzyme Q; mitochondria; respiratory electron transport; Coq4
8.  Saccharomyces cerevisiae Coq9 Polypeptide is a Subunit of the Mitochondrial Coenzyme Q Biosynthetic Complex 
Coenzyme Q (Q) is a redox active lipid that is an essential component of the electron transport chain. Here, we show that steady state levels of Coq3, Coq4, Coq6, Coq7 and Coq9 polypeptides in yeast mitochondria are dependent on the expression of each of the other COQ genes. Submitochondrial localization studies indicate Coq9p is a peripheral membrane protein on the matrix side of the mitochondrial inner membrane. To investigate whether Coq9p is a component of a complex of Q-biosynthetic proteins, the native molecular mass of Coq9p was determined by Blue Native-PAGE. Coq9p was found to co-migrate with Coq3p and Coq4p at a molecular mass of approximately 1 MDa. A direct physical interaction was shown by the immunoprecipitation of HA-tagged Coq9 polypeptide with Coq4p, Coq5p, Coq6p and Coq7p. These findings, together with other work identifying Coq3p and Coq4p interactions, identify at least six Coq polypeptides in a multi-subunit Q biosynthetic complex.
doi:10.1016/j.abb.2007.02.016
PMCID: PMC2080827  PMID: 17391640
9.  Endogenous Synthesis of Coenzyme Q in Eukaryotes 
Mitochondrion  2007;7(Suppl):S62-S71.
Coenzyme Q (Q) functions in the mitochondrial respiratory chain and serves as a lipophilic antioxidant. There is increasing interest in the use of Q as a nutritional supplement. Although the physiological significance of Q is extensively investigated in eukaryotes, ranging from yeast to human, the eukaryotic Q biosynthesis pathway is best characterized in the budding yeast Saccharomyces cerevisiae. At least ten genes (COQ1-COQ10) have been shown to be required for Q biosynthesis and function in respiration. This review highlights recent knowledge about the endogenous synthesis of Q in eukaryotes, with emphasis on S. cerevisiae as a model system.
doi:10.1016/j.mito.2007.03.007
PMCID: PMC1974887  PMID: 17482885
Coenzyme Q; Mitochondria; Eukaryotes
10.  The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR 
Nature  2014;510(7505):397-401.
Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.
doi:10.1038/nature13264
PMCID: PMC4263271  PMID: 24828042
11.  ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption  
The Journal of Clinical Investigation  2013;123(12):5179-5189.
Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10.
doi:10.1172/JCI69000
PMCID: PMC3859425  PMID: 24270420
12.  176th ENMC International Workshop: Diagnosis and treatment of Coenzyme Q10 deficiency 
Neuromuscular Disorders  2011;22(1):76-86.
doi:10.1016/j.nmd.2011.05.001
PMCID: PMC3222743  PMID: 21723727
Mitochondrial disease; Coenzyme Q10; Ubiquinone; Respiratory chain
13.  Delayed accumulation of intestinal coliform bacteria enhances life span and stress resistance in Caenorhabditis elegans fed respiratory deficient E. coli 
BMC Microbiology  2012;12:300.
Background
Studies with the nematode model Caenorhabditis elegans have identified conserved biochemical pathways that act to modulate life span. Life span can also be influenced by the composition of the intestinal microbiome, and C. elegans life span can be dramatically influenced by its diet of Escherichia coli. Although C. elegans is typically fed the standard OP50 strain of E. coli, nematodes fed E. coli strains rendered respiratory deficient, either due to a lack coenzyme Q or the absence of ATP synthase, show significant life span extension. Here we explore the mechanisms accounting for the enhanced nematode life span in response to these diets.
Results
The intestinal load of E. coli was monitored by determination of worm-associated colony forming units (cfu/worm or coliform counts) as a function of age. The presence of GFP-expressing E. coli in the worm intestine was also monitored by fluorescence microscopy. Worms fed the standard OP50 E. coli strain have high cfu and GFP-labeled bacteria in their guts at the L4 larval stage, and show saturated coliform counts by day five of adulthood. In contrast, nematodes fed diets of respiratory deficient E. coli lacking coenzyme Q lived significantly longer and failed to accumulate bacteria within the lumen at early ages. Animals fed bacteria deficient in complex V showed intermediate coliform numbers and were not quite as long-lived. The results indicate that respiratory deficient Q-less E. coli are effectively degraded in the early adult worm, either at the pharynx or within the intestine, and do not accumulate in the intestinal tract until day ten of adulthood.
Conclusions
The findings of this study suggest that the nematodes fed the respiratory deficient E. coli diet live longer because the delay in bacterial colonization of the gut subjects the worms to less stress compared to worms fed the OP50 E. coli diet. This work suggests that bacterial respiration can act as a virulence factor, influencing the ability of bacteria to colonize and subsequently harm the animal host. Respiratory deficient bacteria may pose a useful model for probing probiotic relationships within the gut microbiome in higher organisms.
doi:10.1186/1471-2180-12-300
PMCID: PMC3548685  PMID: 23256533
Aging; Bacterial colonization; Coenzyme Q; Gut microbiome; Intestine; Life span; Pharynx; Probiotic; Respiration
14.  Coq6 hydroxylase: unmasked and bypassed 
Chemistry & biology  2011;18(9):1069-1070.
Summary
Coenzyme Q is a polyisoprenylated benzoquinone lipid essential in cellular energy metabolism. Ozeir et al. (2011) show that an enzyme, Coq6, is required for the coenzyme Q C5-ring hydroxylation, and that defects in Coq6 can be bypassed by providing alternate ring precursors.
doi:10.1016/j.chembiol.2011.09.006
PMCID: PMC3245979  PMID: 21944743
15.  Folate status of gut microbiome affects Caenorhabditis elegans lifespan 
BMC Biology  2012;10:66.
In a paper in BMC Biology Virk et al. show that Caenorhabditis elegans lifespan is extended in response to a diet of folate-deficient Escherichia coli. The deficiencies in folate biosynthesis were due to an aroD mutation, or treatment of E. coli with sulfa drugs, which are mimics of the folate precursor para-aminobenzoic acid. This study suggests that pharmacological manipulation of the gut microbiome folate status may be a viable approach to slow animal aging, and raises questions about folate supplementation.
See research article http://www.http://www.biomedcentral.com/1741-7007/10/67
doi:10.1186/1741-7007-10-66
PMCID: PMC3409036  PMID: 22849295
16.  Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice 
EMBO Molecular Medicine  2011;3(7):410-427.
Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy-like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high-dose CoQ10 supplementation and uniquely restores CoQ9 content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator-activated receptor (PPAR) pathway signaling. Probucol's beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ9 content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy.
doi:10.1002/emmm.201100149
PMCID: PMC3394513  PMID: 21567994
coenzyme Q; kidney; mitochondria; mouse; probucol
17.  Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria 
Journal of neurochemistry  2008;106(1):299-312.
The objective of this study was to characterize the lipidome and electron transport chain activities in purified non-synaptic (NS) and synaptic (Syn) mitochondria from C57BL/6J mouse cerebral cortex. Contamination from subcellular membranes, especially myelin, has hindered past attempts to accurately characterize the lipid composition of brain mitochondria. An improved Ficoll and sucrose discontinuous gradient method was employed that yielded highly enriched mitochondrial populations free of myelin contamination. The activities of Complexes I, II, III, and II/III were lower in Syn than in NS mitochondria, while Complexes I/III and IV activities were similar in both populations. Shotgun lipidomics showed that levels of cardiolipin (Ptd2Gro) were lower, whereas levels of ceramide and phosphatidylserine were higher in Syn than in NS mitochondria. Coenzyme Q9 and Q10 was also lower in Syn than in NS mitochondria. Gangliosides, phosphatidic acid, sulfatides, and cerebrosides were undetectable in brain mitochondria. The distribution of Ptd2Gro molecular species was similar in both populations and formed a unique pattern, consisting of seven major molecular species groups, when arranged according to mass to charge ratios. Remodeling involving choline and ethanolamine phosphoglycerides could explain Ptd2Gro heterogeneity. NS and Syn mitochondrial lipidomic heterogeneity could influence energy metabolism, which may contribute to metabolic compartmentation of the brain.
doi:10.1111/j.1471-4159.2008.05383.x
PMCID: PMC3104050  PMID: 18373617
cardiolipin; lipidome; myelin; non-synaptic; shotgun lipidomics; synaptic
18.  COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness  
The Journal of Clinical Investigation  2011;121(5):2013-2024.
Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monooxygenase 6 (COQ6) in 13 individuals from 7 families by homozygosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 was located within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-renal disease phenotype. These data suggest that coenzyme Q10–related forms of SRNS and hearing loss can be molecularly identified and potentially treated.
doi:10.1172/JCI45693
PMCID: PMC3083770  PMID: 21540551
19.  Complementation of Saccharomyces cerevisiae coq7 Mutants by Mitochondrial Targeting of the Escherichia coli UbiF Polypeptide 
The Journal of biological chemistry  2006;281(24):16401-16409.
Coenzyme Q (ubiquinone or Q) functions in the respiratory electron transport chain and serves as a lipophilic antioxidant. In the budding yeast Saccharomyces cerevisiae, Q biosynthesis requires nine Coq proteins (Coq1–Coq9). Previous work suggests both an enzymatic activity and a structural role for the yeast Coq7 protein. To define the functional roles of yeast Coq7p we test whether Escherichia coli ubiF can functionally substitute for yeast COQ7. The ubiF gene encodes a flavin-dependent monooxygenase that shares no homology to the Coq7 protein and is required for the final monooxygenase step of Q biosynthesis in E. coli. The ubiF gene expressed at low copy restores growth of a coq7 point mutant (E194K) on medium containing a non-fermentable carbon source, but fails to rescue a coq7 null mutant. However, expression of ubiF from a multicopy vector restores growth and Q synthesis for both mutants, although with a higher efficiency in the point mutant. We attribute the more efficient rescue of the coq7 point mutant to higher steady state levels of the Coq3, Coq4, and Coq6 proteins and to the presence of demethoxyubiquinone, the substrate of UbiF. Coq7p co-migrates with the Coq3 and Coq4 polypeptides as a high molecular mass complex. Here we show that addition of Q to the growth media also stabilizes the Coq3 and Coq4 polypeptides in the coq7 null mutant. The data suggest that Coq7p, and the lipid quinones (demethoxyubiquinone and Q) function to stabilize other Coq polypeptides.
doi:10.1074/jbc.M513267200
PMCID: PMC3066048  PMID: 16624818
20.  Paraoxonase 2 Deficiency Alters Mitochondrial Function and Exacerbates the Development of Atherosclerosis 
Antioxidants & Redox Signaling  2011;14(3):341-351.
Abstract
Increased production of reactive oxygen species (ROS) as a result of decreased activities of mitochondrial electron transport chain (ETC) complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. Our previous studies established that paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. The aim of the present study was to determine the mechanism by which PON2 modulates ROS production. In this report, we demonstrate that PON2-def mice on the hyperlipidemic apolipoprotein E−/− background (PON2-def/apolipoprotein E−/−) develop exacerbated atherosclerotic lesions with enhanced mitochondrial oxidative stress. We show that PON2 protein is localized to the inner mitochondrial membrane, where it is found associated with respiratory complex III. Employing surface-plasmon-resonance, we demonstrate that PON2 binds with high affinity to coenzyme Q10, an important component of the ETC. Enhanced mitochondrial oxidative stress in PON2-def mice was accompanied by significantly reduced ETC complex I + III activities, oxygen consumption, and adenosine triphosphate levels in PON2-def mice. In contrast, overexpression of PON2 effectively protected mitochondria from antimycin- or oligomycin-mediated mitochondrial dysfunction. Our results illustrate that the antiatherogenic effects of PON2 are, in part, mediated by the role of PON2 in mitochondrial function. Antioxid. Redox Signal. 14, 341–351.
doi:10.1089/ars.2010.3430
PMCID: PMC3011913  PMID: 20578959
21.  Evidence that Ubiquinone Is a Required Intermediate for Rhodoquinone Biosynthesis in Rhodospirillum rubrum▿  
Journal of Bacteriology  2009;192(2):436-445.
Rhodoquinone (RQ) is an important cofactor used in the anaerobic energy metabolism of Rhodospirillum rubrum. RQ is structurally similar to ubiquinone (coenzyme Q or Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is also found in several eukaryotic species that utilize a fumarate reductase pathway for anaerobic respiration, an important example being the parasitic helminths. RQ is not found in humans or other mammals, and therefore inhibition of its biosynthesis may provide a parasite-specific drug target. In this report, we describe several in vivo feeding experiments with R. rubrum used for the identification of RQ biosynthetic intermediates. Cultures of R. rubrum were grown in the presence of synthetic analogs of ubiquinone and the known Q biosynthetic precursors demethylubiquinone, demethoxyubiquinone, and demethyldemethoxyubiquinone, and assays were monitored for the formation of RQ3. Data from time course experiments and S-adenosyl-l-methionine-dependent O-methyltransferase inhibition studies are discussed. Based on the results presented, we have demonstrated that Q is a required intermediate for the biosynthesis of RQ in R. rubrum.
doi:10.1128/JB.01040-09
PMCID: PMC2805321  PMID: 19933361
22.  Lipids Including Cholesteryl Linoleate and Cholesteryl Arachidonate Contribute to the Inherent Antibacterial Activity of Human Nasal Fluid1 
Mucosal surfaces provide first-line defense against microbial invasion through their complex secretions. The antimicrobial activities of proteins in these secretions have been well delineated, but the contributions of lipids to mucosal defense have not been defined. We found that normal human nasal fluid contains all major lipid classes (μg/ml), as well as lipoproteins and apolipoprotein AI. The predominant less polar lipids were myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acid, cholesterol, and cholesteryl palmitate, -linoleate, and -arachidonate. Normal human bronchioepithelial cell secretions exhibited a similar lipid composition. Removal of less-polar lipids significantly decreased the inherent antibacterial activity of nasal fluid against Pseudomonas aeruginosa, which was in part restored after replenishing the lipids. Furthermore, lipids extracted from nasal fluid exerted direct antibacterial activity in synergism with the antimicrobial peptide HNP-2 and liposomal formulations of cholesteryl linoleate and cholesteryl arachidonate were active against P. aeruginosa at physiological concentrations as found in nasal fluid and exerted inhibitory activity against other gram negative and gram positive bacteria. These data suggest that host-derived lipids contribute to mucosal defense. The emerging concept of host-derived antimicrobial lipids unveils novel roads to a better understanding of the immunology of infectious diseases.
PMCID: PMC2597438  PMID: 18768875
Lipid mediators; mucosa; lung; bacterial infections
23.  The Role of UbiX in Escherichia coli Coenzyme Q Biosynthesis 
The reversible redox chemistry of coenzyme Q serves a crucial function in respiratory electron transport. Biosynthesis of Q in Escherichia coli depends on the ubi genes. However, very little is known about UbiX, an enzyme thought to be involved in the decarboxylation step in Q biosynthesis in E. coli and Salmonella enterica. Here we characterize an E. coli ubiX gene deletion strain, LL1, to further elucidate E. coli ubiX function in Q biosynthesis. LLI produces very low levels of Q, grows slowly on succinate as the sole carbon source, accumulates 4-hydroxy-3-octaprenyl-benzoate, and has reduced UbiG O-methyltransferase activity. Expression of either E. coli ubiX or the Saccharomyces cerevisiae ortholog PAD1, rescues the deficient phenotypes of LL1, identifying PAD1 as an ortholog of ubiX. Our results suggest that both UbiX and UbiD are required for the decarboxylation of 4-hydroxy-3-octaprenyl-benzoate in E. coli coenzyme Q biosynthesis, especially during logarithmic growth.
doi:10.1016/j.abb.2007.08.009
PMCID: PMC2475804  PMID: 17889824
24.  Primary Coenzyme Q Deficiency in Pdss2 Mutant Mice Causes Isolated Renal Disease 
PLoS Genetics  2008;4(4):e1000061.
Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.
Author Summary
Coenzyme Q is a critical component of the mitochondrial respiratory chain, the process by which cells make energy. Coenzyme Q deficiency in humans causes a wide range of disease manifestations affecting the nervous system, muscles, and kidneys. Here, we show that the failure to make Coenzyme Q due to a Pdss2 mutation is the cause of a lethal kidney disease in mice that was previously thought to result from an autoimmune process. Studying both a spontaneously occurring missense mutant and a series of mutants generated to have the Coenzyme Q deficiency targeted solely to liver, kidney, or macrophages, we show that the specific cell type in which the kidney disease arises is the glomerular podocyte. No other manifestations of disease are evident in these animals. However, our analysis of livers from these mice reveals that they have significant depletion of Coenzyme Q, impairment of mitochondrial respiratory chain function, and disturbance of many other basic metabolic processes. Similar microarray patterns of cellular alterations to primary mitochondrial dysfunction were seen both in these mice and in a previously reported nematode model, suggesting that a common cellular profile of primary respiratory chain function may exist across evolution.
doi:10.1371/journal.pgen.1000061
PMCID: PMC2291193  PMID: 18437205
25.  Genetic Evidence for an Interaction of the UbiG O-Methyltransferase with UbiX in Escherichia coli Coenzyme Q Biosynthesis 
Journal of Bacteriology  2006;188(17):6435-6439.
IS16 is a thiol-sensitive, Q-deficient mutant strain of Escherichia coli. Here, we show that IS16 harbors a mutation in the ubiG gene encoding a methyltransferase required for two O-methylation steps of Q biosynthesis. Complementation of IS16 with either ubiG or ubiXK-12 reverses this phenotype, suggesting that UbiX may interact with UbiG.
doi:10.1128/JB.00668-06
PMCID: PMC1595381  PMID: 16923914

Results 1-25 (26)