PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Activation of ERK and NF-κB during HARE-Mediated Heparin Uptake Require Only One of the Four Endocytic Motifs 
PLoS ONE  2016;11(4):e0154124.
Fifteen different ligands, including heparin (Hep), are cleared from lymph and blood by the Hyaluronan (HA) Receptor for Endocytosis (HARE; derived from Stabilin-2 by proteolysis), which contains four endocytic motifs (M1-M4). Endocytosis of HARE•Hep complexes is targeted to coated pits by M1, M2, and M3 (Pandey et al, Int. J. Cell Biol. 2015, article ID 524707), which activates ERK1/2 and NF-κB (Pandey et al J. Biol. Chem. 288, 14068–79, 2013). Here, we used a NF-κB promoter-driven luciferase gene assay and cell lines expressing different HARE cytoplasmic domain mutants to identify motifs needed for Hep-mediated signaling. Deletion of M1, M2 or M4 singly had no effect on Hep-mediated ERK1/2 activation, whereas signaling (but not uptake) was eliminated in HARE(ΔM3) cells lacking NPLY2519. ERK1/2 signaling in cells expressing WT HARE(Y2519A) or HARE(Y2519A) lacking M1, M2 and M4 (containing M3-only) was decreased by 75% or eliminated, respectively. Deletion of M3 (but not M1, M2 or M4) also inhibited the formation of HARE•Hep•ERK1/2 complexes by 67%. NF-κB activation by HARE-mediated uptake of Hep, HA, dermatan sulfate or acetylated LDL was unaffected in single-motif deletion mutants lacking M1, M2 or M4. In contrast, cells expressing HARE(ΔM3) showed loss of HARE-mediated NF-κB activation during uptake of each of these four ligands. NF-κB activation by the four signaling ligands was also eliminated in HARE(Y2519A) or HARE(M3-only;Y2519A) cells. We conclude that the HARE NPLY2519 motif is necessary for both ERK1/2 and NF-κB signaling and that Tyr2519 is critical for these functions.
doi:10.1371/journal.pone.0154124
PMCID: PMC4839745  PMID: 27100626
3.  Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior 
Hyaluronan (HA) biosynthesis has been studied for over six decades, but our understanding of the biochemical details of how HA synthase (HAS) assembles HA is still incomplete. Class I family members include mammalian and streptococcal HASs, the focus of this review, which add new intracellular sugar-UDPs at the reducing end of growing hyaluronyl-UDP chains. HA-producing cells typically create extracellular HA coats (capsules) and also secrete HA into the surrounding space. Since HAS contains multiple transmembrane domains and is lipid-dependent, we proposed in 1999 that it creates an intraprotein HAS-lipid pore through which a growing HA-UDP chain is translocated continuously across the cell membrane to the exterior. We review here the evidence for a synthase pore-mediated polysaccharide translocation process and describe a possible mechanism (the Pendulum Model) and potential energy sources to drive this ATP-independent process. HA synthases also synthesize chitin oligosaccharides, which are created by cleavage of novel oligo-chitosyl-UDP products. The synthesis of chitin-UDP oligomers by HAS confirms the reducing end mechanism for sugar addition during HA assembly by streptococcal and mammalian Class I enzymes. These new findings indicate the possibility that HA biosynthesis is initiated by the ability of HAS to use chitin-UDP oligomers as self-primers.
doi:10.1155/2015/367579
PMCID: PMC4581545  PMID: 26472958
4.  Hyaluronan synthase assembles chitin oligomers with -GlcNAc(α1→)UDP at the reducing end 
Glycobiology  2015;25(6):632-643.
Class I hyaluronan synthases (HASs) assemble a polysaccharide containing the repeating disaccharide [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP and vertebrate HASs also assemble (GlcNAc-β1,4)n homo-oligomers (chitin) in the absence of GlcUA-UDP. This multi-membrane domain CAZy GT2 family glycosyltransferase, which couples HA synthesis and translocation across the cell membrane, is atypical in that monosaccharides are incrementally assembled at the reducing, rather than the non-reducing, end of the growing polymer. Using Escherichia coli membranes containing recombinant Streptococcus equisimilis HAS, we demonstrate that a prokaryotic Class I HAS also synthesizes chitin oligomers (up to 15-mers, based on MS and MS/MS analyses of permethylated products). Furthermore, chitin oligomers were found attached at their reducing end to -4GlcNAc(α1→)UDP [i.e. (GlcNAcβ1,4)nGlcNAc(α1→)UDP]. These oligomers, which contained up to at least seven HexNAc residues, consisted of β4-linked GlcNAc residues, based on the sensitivity of the native products to jack bean β-N-acetylhexosaminidase. Interestingly, these oligomers exhibited mass defects of -2, or -4 for longer oligomers, that strictly depended on conjugation to UDP, but MS/MS analyses indicate that these species result from chemical dehydrogenations occurring in the gas phase. Identification of (GlcNAc-β1,4)n-GlcNAc(α1→)UDP as HAS reaction products, made in the presence of GlcNAc(α1→)UDP only, provides strong independent confirmation for the reducing terminal addition mechanism. We conclude that chitin oligomer products made by HAS are derived from the cleavage of these novel activated oligo-chitosyl-UDP oligomers. Furthermore, it is possible that these UDP-activated chitin oligomers could serve as self-assembled primers for initiating HA synthesis and ultimately modify the non-reducing terminus of HA with a chitin cap.
doi:10.1093/glycob/cwv006
PMCID: PMC4410831  PMID: 25583822
activated oligosaccharide; chitobiosyl; Class I hyaluronan synthase; polymer synthesis; reducing end elongation
5.  Systemic blockade of the Hyaluronan Receptor for Endocytosis (HARE) prevents lymph node metastasis of prostate cancer 
Tumor progression and metastasis are promoted by the remodeling of organized tissue architecture and engagement of molecular interactions that support tumor cell passage through endothelial barriers. Prostate tumor cells that secrete and turn over excessive quantities of pericellular hyaluronan (HA) exhibit accelerated growth kinetics and spontaneous lymph node metastasis in mice. The HA Receptor for Endocytosis (HARE) is an endocytic clearance receptor for HA in the liver that is also highly expressed in sinusoidal endothelium of lymph nodes and bone marrow, which are frequent sites of prostate cancer metastasis. In this study, we tested the hypothesis that HARE can act as an endothelial receptor for metastatic tumor cells with pericellular HA. In an orthotopic mouse model of prostate cancer, we delivered a monoclonal antibody against HARE that specifically blocks HA binding and internalization. This treatment fully blocked the formation of metastatic tumors in lymph nodes. No effects on primary tumor growth were observed and the antibody did not induce toxic outcomes in any other tissue. Our results implicate HARE for the first time in potentiation of tumor metastasis and suggest a novel mechanism by which tumor cell-associated HA could promote tissue-specific dissemination.
doi:10.1002/ijc.27427
PMCID: PMC4444783  PMID: 22234863
prostate cancer; hyaluronan; metastasis; HARE; Stab2; Stabilin 2; mouse orthotopic model
6.  HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs 
The hyaluronan (HA) receptor for endocytosis (HARE) is a multifunctional recycling clearance receptor for 14 different ligands, including HA and heparin (Hep), which bind to discrete nonoverlapping sites. Four different functional endocytic motifs (M) in the cytoplasmic domain (CD) target coated pit mediated uptake: (YSYFRI2485 (M1), FQHF2495 (M2), NPLY2519 (M3), and DPF2534 (M4)). We previously found (Pandey et al. J. Biol. Chem. 283, 21453, 2008) that M1, M2, and M3 mediate endocytosis of HA. Here we assessed the ability of HARE variants with a single-motif deletion or containing only a single motif to endocytose HA or Hep. Single-motif deletion variants lacking M1, M3, or M4 (a different subset than involved in HA uptake) showed decreased Hep endocytosis, although M3 was the most active; the remaining redundant motifs did not compensate for loss of other motifs. Surprisingly, a HARE CD variant with only M3 internalized both HA and Hep, whereas variants with either M2 or M4 alone did not endocytose either ligand. Internalization of HA and Hep by HARE CD mutants was dynamin-dependent and was inhibited by hyperosmolarity, confirming clathrin-mediated endocytosis. The results indicate a complicated relationship among multiple CD motifs that target coated pit uptake and a more fundamental role for motif M3.
doi:10.1155/2015/524707
PMCID: PMC4390207  PMID: 25883656
7.  Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg2+ Ions and Severe Inhibitory Effects of Divalent Cations 
Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg2+ for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg2+ with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg2+ dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg2+. In the presence of Mg2+, other divalent cations inhibited SeHAS with different potencies (Cu2+~Zn2+ >Co2+ >Ni2+ >Mn2+ >Ba2+ Sr2+ Ca2+). Some divalent metal ions likely inhibit by displacement of Mg2+-UDP-Sugar complexes (e.g. Ca2+, Sr2+ and Ba2+ had apparent Ki values of 2-5 mM). In contrast, Zn2+ and Cu2+ inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu2+, but not Zn2+, was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn2+ or Cu2+. Wildtype SeHAS allowed to make HA prior to exposure to Zn2+ or Cu2+ was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg2+ and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these –SH groups.
doi:10.4172/2153-0637.S1-001
PMCID: PMC4176928  PMID: 25267933
Streptococcal; Enzyme kinetics; Cooperativity; Mutagenesis; Cysteine cluster
8.  DIGESTION PRODUCTS OF THE PH20 HYALURONIDASE INHIBIT REMYELINATION 
Annals of neurology  2013;73(2):266-280.
OBJECTIVE
Oligodendrocyte progenitor cells (OPCs) recruited to demyelinating lesions often fail to mature into oligodendrocytes (OLs) that remyelinate spared axons. The glycosaminoglycan hyaluronan (HA) accumulates in demyelinating lesions and has been implicated in the failure of OPC maturation and remyelination. We tested the hypothesis that OPCs in demyelinating lesions express a specific hyaluronidase, and that digestion products of this enzyme inhibit OPC maturation.
METHODS
Mouse OPCs grown in vitro were analyzed for hyaluronidase expression and activity. Gain of function studies were used to define the hyaluronidases that blocked OPC maturation. Mouse and human demyelinating lesions were assessed for hyaluronidase expression. Digestion products from different hyaluronidases and a hyaluronidase inhibitor were tested for their effects on OPC maturation and functional remyelination in vivo.
RESULTS
OPCs demonstrated hyaluronidase activity in vitro and expressed multiple hyaluronidases including HYAL1, HYAL2, and PH20. HA digestion by PH20 but not other hyaluronidases inhibited OPC maturation into OLs. In contrast, inhibiting HA synthesis did not influence OPC maturation. PH20 expression was elevated in OPCs and reactive astrocytes in both rodent and human demyelinating lesions. HA-digestion products generated by the PH20 hyaluronidase but not another hyaluronidase inhibited remyelination following lysolecithin-induced demyelination. Inhibition of hyaluronidase activity lead to increased OPC maturation and promoted increased conduction velocities through lesions.
INTERPRETATION
We determined that PH20 is elevated in demyelinating lesions and that increased PH20 expression is sufficient to inhibit OPC maturation and remyelination. Pharmacological inhibition of PH20 may therefore be an effective way to promote remyelination in multiple sclerosis and related conditions.
doi:10.1002/ana.23788
PMCID: PMC3608752  PMID: 23463525
9.  Hyaluronan turnover and hypoxic brown adipocytic differentiation are co-localized with ossification in calcified human aortic valves 
Pathology, research and practice  2012;208(11):642-650.
The calcification process in aortic stenosis has garnered considerable interest but only limited investigation into selected signaling pathways. This study investigated mechanisms related to hypoxia, hyaluronan homeostasis, brown adipocytic differentiation, and ossification within calcified valves. Surgically explanted calcified aortic valves (n=14) were immunostained for markers relevant to these mechanisms and evaluated in the center (NodCtr) and edge (NodEdge) of the calcified nodule (NodCtr), tissue directly surrounding nodule (NodSurr); center and tissue surrounding small “prenodules” (PreNod, PreNodSurr); and normal fibrosa layer (CollFibr). Pearson correlations were determined between staining intensities of markers within regions. Ossification markers primarily localized to NodCtr and NodEdge, along with markers related to hyaluronan turnover and hypoxia. Markers of brown adipocytic differentiation were frequently co-localized with markers of hypoxia. In NodCtr and NodSurr, brown fat and ossification markers correlated with hyaluronidase-1, whereas these markers, as well as hypoxia, correlated with hyaluronan synthases in NodEdge. The protein product of tumor necrosis factor-α stimulated gene-6 strongly correlated with ossification markers and hyaluronidase in the regions surrounding the nodules (NodSurr, PreNodSurr). In conclusion, this study suggests roles for hyaluronan homeostasis and the promotion of hypoxia by cells demonstrating brown fat markers in calcific aortic valve disease.
doi:10.1016/j.prp.2012.08.001
PMCID: PMC3496006  PMID: 23017666
brown adipocytes; hyaluronan; hypoxia; calcification; aortic valve
10.  Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines 
Glycobiology  2012;22(10):1302-1310.
Streptococcus equisimilis hyaluronan (HA) synthase (SeHAS) contains four cysteines (C226, C262, C281 and C367) that are conserved in the mammalian HAS family. Previous studies of single Cys-to-Ser and all possible Cys-to-Ala mutants of SeHAS found that: the Cys-null mutant is active, Cys modification inhibits HAS activity and the conserved cysteines are clustered at the membrane–enzyme interface in substrate-binding sites (Kumari K, Weigel PH. 2005. Identification of a membrane-localized cysteine cluster near the substrate binding sites of the Streptococcus equisimilis hyaluronan synthase. Glycobiology. 15:529–539). We re-examined these Cys mutants using a single technique (size exclusion chromatography–multi-angle laser light scattering) that allows simultaneous assays on the same sample for both HA synthesis activity and HA product size. Among 18 mutants compared with wild type, 4 showed no change in either function and 3 showed changes in both (decreased activity and HA size). Only one of the two functions was altered in 11 other mutants, which showed either decreased polymerizing activity or product size. No mutants made larger HA, 8 made smaller HA and 10 showed no change in HA size. Nine mutants showed no change in activity and nine were less active. The mutants fell into four of nine possible groups in terms of changes in HA size or synthesis rate (i.e. none, increased or decreased). Specific Cys residues were associated with each mutant group and the pattern of effects on both functions. Thus, the four conserved Cys residues, individually and in specific combinations, influence the rate of sugar assembly by HAS and HA product size, but their participation in one function is independent of the other.
doi:10.1093/glycob/cws102
PMCID: PMC3425326  PMID: 22745284
active-site cysteines; elongation rate; polymer length; size control; size control model
11.  Hyaluronan synthase mediates dye translocation across liposomal membranes 
BMC Biochemistry  2012;13:2.
Background
Hyaluronan (HA) is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS), which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS) to liposomes preloaded with the fluorophore Cascade Blue (CB).
Results
CB translocation (efflux) was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL). An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL) and that, in contrast, tetramyristoyl cardiolipin (TM-CL) is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006). Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL.
Conclusions
The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.
doi:10.1186/1471-2091-13-2
PMCID: PMC3331846  PMID: 22276637
12.  N-Glycans on the link domain of human HARE/Stabilin-2 are needed for hyaluronan binding to purified ecto-domain, but not for cellular endocytosis of hyaluronan 
Glycobiology  2010;20(8):991-1001.
The hyaluronic acid receptor for endocytosis (HARE)/Stabilin-2 is the primary systemic scavenger receptor for 13 ligands including hyaluronan (HA), heparin and chondroitin sulfates. Most ligand-binding sites are within the 190 kDa isoform, which contains ∼25 kDa of N-glycans and is the C-terminal half of the full-length 315 kDa HARE. Glycoproteomic analyses of purified recombinant human 190-HARE ecto-domain identified a diverse population of glycans at 10 of 17 consensus sites. The most diversity (and the only sialylated structures) occurred at N2280, within the HA-binding Link domain. To determine if these N-glycans are required for HA binding, we created human Flp-In 293 cell lines expressing membrane-bound or soluble ecto-domain variants of 190-HARE(N2280A). Membrane-bound HARE lacking Link domain N-glycans mediated rapid HA endocytosis, but purified 190-HARE(N2280A) ecto-domain showed little or no HA binding in ELISA-like, HA-HARE pull-down assays or by surface plasmon resonance analysis (which detected very high apparent affinity for 190-HARE ecto-domain binding to HA; Kd = 5.2 nM). The results indicate that Link domain N-glycans stabilize interactions that facilitate HA binding to HARE.
doi:10.1093/glycob/cwq057
PMCID: PMC2895729  PMID: 20466649
coated pit mediated; conformation; glycosaminoglycan turnover; HA binding affinity; Stabilin-2
13.  Increased Hyaluronan Synthase-2 mRNA Expression and Hyaluronan Accumulation with Choroidal Thickening: Response during Recovery from Induced Myopia 
Significant increases in hyaluronan (HA) are readily detectable in chick choroids during the process of recovery from form-deprivation myopia. This HA accumulation is initiated by a rapid increase in choroidal expression of the HAS2 gene in response to myopic defocus.
Purpose.
Several studies have convincingly shown that in chicks, compensation for imposed focus involves immediate changes in choroid thickness. The molecular events associated with choroidal thickening and the regulation of the choroidal response are largely unknown.
Methods.
Form-deprivation myopia was induced in the right eyes of 2-day-old chicks by the application of translucent occluders for 10 days and was followed by unrestricted vision for an additional 1 to 20 days (recovery). Individual choroids were isolated from treated and control eyes and used for reverse transcription–quantitative PCR, hyaluronan (HA) localization with biotinylated hyaluronic acid binding protein (b-HABP), and analyses of HA size and concentration by size exclusion chromatography-multiangle laser light scattering (SEC-MALLS).
Results.
HAS2 gene expression increased significantly after 6 hours of unrestricted vision (>7-fold) and peaked at 24 hours (>9-fold). In untreated eyes, HA was localized to perivascular sheaths of larger choroidal blood vessels; however, after 4 to 15 days of recovery, intense labeling for HA was detected throughout the thickened choroidal stroma. Analyses of choroidal HA by SEC-MALLS indicated that HA concentration was significantly increased in recovering choroids compared with controls after 4 to 8 days of recovery (≈3.5-fold).
Conclusions.
Newly synthesized HA accumulates in the choroidal stroma of recovering eyes and is most likely responsible for the stromal swelling observed during recovery from myopia. This HA accumulation is initiated by a rapid increase in choroidal expression of the HAS2 gene in response to myopic defocus.
doi:10.1167/iovs.10-5522
PMCID: PMC3055751  PMID: 20574026
14.  The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E 
Glycobiology  2008;18(8):638-648.
The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341–17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. 125I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.
doi:10.1093/glycob/cwn045
PMCID: PMC2561176  PMID: 18499864
chondroitin sulfate; endocytosis; glycosaminoglycan turnover; heparin; Stabilin-2
15.  Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves 
Introduction
Extracellular matrix changes occur in many heart valve pathologies. For example, myxomatous mitral valves are reported to contain excess proteoglycans (PGs) and hyaluronan (HA). However, it is unknown which specific PGs are altered in myxomatous valves. Because PGs perform varied functions in connective tissues, this study was designed to identify and localize three matrix-associated PGs as well as HA and the HA receptor for endocytosis (HARE) within myxomatous and normal mitral valves.
Methods
Human mitral posterior leaflets (control n=6−9, myxomatous n=14−21, mean age 61 for all groups) were histochemically stained for PG core proteins, HA, and HARE. Stain intensity was semi-quantitatively graded to determine differences in marker abundance betweennormal and myxomatous valves. The PGs were localized to different regions of the leaflet by correspondence to parallel Movat stained sections
Results
The PGs decorin, biglycan and versican were more abundant in myxomatous valves than in normal controls (p<0.03). There was a gender effect on PG presence but no age related trends were observed. HA and HARE were distributed throughout all valves. There was no significant difference in HA between groups, but HARE expression was reduced in myxomatous valves compared to normal controls (p<0.002).
Conclusion
Excess decorin, biglycan and versican may be associated with the remodeling of other matrix components in myxomatous mitral valves. Decreased expression of HARE in myxomatous valves suggests that HA metabolism could be altered in myxomatous mitral valve disease. These finding contribute towards elucidating the pathogenesis of myxomatous mitral valve disease and developing potential new therapies.
doi:10.1016/j.carpath.2008.05.001
PMCID: PMC2706283  PMID: 18621549
Myxomatous mitral valve; Proteoglycan; Hyaluronan; Remodeling; Extracellular matrix
16.  THE LIGAND-BINDING PROFILE OF HARE: HYALURONAN AND CHONDROITIN SULFATES A, C, AND D BIND TO OVERLAPPING SITES DISTINCT FROM THE SITES FOR HEPARIN, ACETYLATED LOW-DENSITY LIPOPROTEIN, DERMATAN SULFATE AND CS-E 
Glycobiology  2008;18(8):638-648.
The Hyaluronic Acid Receptor for Endocytosis (HARE)/Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and non-glycosaminoglycan (GAG) ligands such as acetylated low density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end-products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Harris et al, J. Biol. Chem. 283, 2008;ePub Apr 22). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315- or 190-HARE isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. 125I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Heparin and HA-binding or endocytosis are mutually inclusive; binding of these two GAGs occurs with functionally separate, non-competitive, and apparently non-interacting domains. Thus, HARE binds to HA and Hep simultaneously. Although, the domain(s) responsible for Hep-binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding-activity map for multiple ligands of HARE.
doi:10.1093/glycob/cwn045
PMCID: PMC2561176  PMID: 18499864
chondroitin sulfate; endocytosis; glycosaminoglycan turnover; heparin; Stabilin-2
17.  HYALURONAN BIOSYNTHESIS BY CLASS I STREPTOCOCCAL HYALURONAN SYNTHASES OCCURS AT THE REDUCING END 
The Journal of biological chemistry  2005;280(13):13012-13018.
doi:10.1074/jbc.M409788200
PMCID: PMC1592226  PMID: 15668242
reducing end; nonreducing end; direction of synthesis; polysaccharide; Glycosyltransferase; glycosaminoglycan
18.  CHARACTERIZATION OF THE PURIFIED HYALURONAN SYNTHASE FROM STREPTOCOCCUS EQUISIMILIS* 
Biochemistry  2004;43(28):9234-9242.
Hyaluronan synthase (HAS) utilizes UDP-GlcUA and UDP-GlcNAc in the presence of Mg2+ to form the GAG hyaluronan (HA). The purified HAS from Streptococcus equisimilis (seHAS) shows high fidelity in that it only polymerizes the native substrates, UDP-GlcNAc and UDP-GlcUA. However, other uridinyl nucleotides and UDP-sugars inhibited enzyme activity, including UDP-GalNAc, UDP-Glc, UDP-Gal, UDP-GalUA, UMP, UDP and UTP. Purified seHAS was ~40% more active in 25 mM, compared to 50 mM, PO4 in the presence of either 50 mM NaCl or KCl, and displayed a slight preference for KCl over NaCl. The pH profile was surprisingly broad, with an effective range of pH 6.5–11.5 and the optimum between pH 9 and 10. SeHAS displayed two apparent pKa values at pH 6.6 and 11.8. As the pH was increased from ~6.5, both Km and Vmax increased until pH ~10.5, above which the kinetic constants gradually declined. Nonetheless, the overall catalytic constant (120/sec) was essentially unchanged from pH 6.5 to pH 10.5. The enzyme is temperature labile, but more stable in the presence of substrate and cardiolipin. Purified seHAS requires exogenous cardiolipin for activity and is very sensitive to the fatty acyl composition of the phospholipid. The enzyme was inactive or highly activated by synthetic cardiolipins containing, respectively, C14:0 or C18:1(Δ9) fatty acids. The apparent Ea for HA synthesis is 40 kJ (9.5 kcal/mol) disaccharide. Increasing the viscosity by increasing concentrations of PEG, ethylene glycol, glycerol, or sucrose inhibited seHAS activity. For PEGs, the extent of inhibition was proportional to their molecular mass. PEGs with average masses of 2.7, 11.7, and 20 Kg/mol caused 50% inhibition of Vmax at 21, 6.5, and 3.5 mM, respectively. The apparent Ki values for ethylene glycol, glycerol, and sucrose were, respectively, 4.5, 3.3 and 1.2 mM.
doi:10.1021/bi049468v
PMCID: PMC1586113  PMID: 15248781
streptococcal; kinetics; pH; viscogens; temperature; divalent cations; CLm cardiolipin; ECM, extracellular matrix; GAG, glycosaminoglycan; HA, hyaluronic acid, hyaluronate, hyaluronan; HAS, HA synthase; seHAS, Streptococcus equisimilis HAS; PBS, phosphate buffered saline; Tris, trishydroxymethylamino methane; TBS, tris-buffered saline; TBST, tris-buffered saline containing 0.05% Tween20
19.  SEC-MALLS ANALYSIS OF HYALURONAN SIZE DISTRIBUTIONS MADE BY MEMBRANE-BOUND HYALURONAN SYNTHASE 
Analytical biochemistry  2006;352(2):243-251.
SEC-MALLS analyses of E. coli membranes expressing Streptococcus equisimilis hyaluronan synthase (seHAS) demonstrated an inherent artifact (10–100 MDa) that co-eluted with HA, and skewed the apparent weight-average mass of HA to erroneously high values. Briefly heating samples to 65–75°C eliminated this artifact and increased the yield of recovered HA, due to the release of HA chains that were attached to membrane-bound HAS. Inclusion of alkaline phosphatase, which removed UDP produced during the reaction, improved the linearity of HA synthesis - even at high substrate utilization. Surprisingly, addition of EDTA, to chelate Mg+2 ions, did not completely stop the HAS reaction at 30°C or at 4°C. The best conditions for stopping the reaction without altering SEC-MALLS profiles of the product HA were to chill samples on ice in the presence of both EDTA and UDP. Even with excess substrate, the maximum size of product HA decreased as the enzyme concentration increased. Therefore, the maximum HA size made by HAS was determined by extrapolation to zero enzyme concentration. Using the above conditions, membrane-bound seHAS synthesized a cohort of HA products that steadily increased in weight-average molar mass, reaching a final maximal steady-state size of 4–6 MDa within 2–4 hours.
doi:10.1016/j.ab.2006.01.019
PMCID: PMC1586112  PMID: 16476403
streptococcal; hyaluronan synthase; light scattering; size distribution; membranes; molar mass
20.  IDENTIFICATION OF A MEMBRANE-LOCALIZED CYSTEINE CLUSTER NEAR THE SUBSTRATE BINDING SITES OF THE STREPTOCOCCUS EQUISIMILIS HYALURONAN SYNTHASE 
Glycobiology  2004;15(5):529-539.
The membrane-bound hyaluronan synthase (HAS) from Streptococcus equisimilis (seHAS), which is the smallest Class I HAS, has four cysteine residues (positions 226, 262, 281, and 367) that are generally conserved within this family. Although Cys-null seHAS is still active, chemical modification of cysteine residues causes inhibition of wildtype enzyme (Kumari et al., J. Biol. Chem. 277, 13943, 2002). Here we studied the effects of N-ethylmaleimide (NEM) treatment on a panel of seHAS Cys-mutants to examine the structural and functional roles of the four cysteine residues in the activity of the enzyme. We found that Cys226, Cys262, and Cys281 are reactive with NEM, but that Cys367 is not. Substrate protection studies of wildtype seHAS and a variety of Cys-mutants revealed that binding of UDP-GlcUA, UDP-GlcNAc or UDP can protect Cys226 and Cys262 from NEM inhibition. Inhibition of the six double Cys-mutants of seHAS by sodium arsenite, which can crosslink vicinyl sulfhydryl groups, also supported the conclusion that Cys262 and Cys281 are close enough to be crosslinked. Similar results indicated that Cys281 and Cys367 are also very close in the active enzyme. We conclude that three of the four Cys residues in seHAS (Cys262, Cys281, and Cys367 ) are clustered very close together, that these Cys residues and Cys226 are located at the inner surface of the cell membrane, and that Cys226 and Cys262 are located in or near a UDP binding site.
doi:10.1093/glycob/cwi030
PMCID: PMC1242197  PMID: 15616126
Sulfhydryl reagents; N-ethylmaleimide; enzyme inhibition; Cysteine modification; site directed mutagenesis; DTE, dithioerythritol; HA, hyaluronan or hyaluronic acid; HAS, HA synthase; NEM, N-ethylmaleimide; PBS, phosphate buffered saline; seHAS, Streptococcus equisimilis HAS; spHAS, Streptococcus pyogenes HAS
21.  Hyaluronic Acid Production in Bacillus subtilis 
The hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase, has been expressed in Bacillus subtilis, resulting in the production of hyaluronic acid (HA) in the 1-MDa range. Artificial operons were assembled and tested, all of which contain the hasA gene along with one or more genes encoding enzymes involved in the synthesis of the UDP-precursor sugars that are required for HA synthesis. It was determined that the production of UDP-glucuronic acid is limiting in B. subtilis and that overexpressing the hasA gene along with the endogenous tuaD gene is sufficient for high-level production of HA. In addition, the B. subtilis-derived material was shown to be secreted and of high quality, comparable to commercially available sources of HA.
doi:10.1128/AEM.71.7.3747-3752.2005
PMCID: PMC1168996  PMID: 16000785
22.  Site-directed mutation of conserved cysteine residues does not inactivate the Streptococcus pyogenes hyaluronan synthase 
Glycobiology  2001;11(12):1017-1024.
Hyaluronan synthase (HAS), the enzyme responsible for the production of hyaluronic acid (HA), is a well-conserved membrane-bound protein in both prokaryotes and eukaryotes. This enzyme performs at least six discrete functions in producing a heterodisaccharide polymer of several million molecular weight and extruding it from the cell. Among the conserved motifs and domains within the Class I HAS family are four cysteine residues. Cysteines in many proteins are important in establishing and maintaining tertiary structure or in the coordination of catalytic functions. In the present study we utilized a combination of site-directed mutagenesis, chemical labeling, and kinetic analyses to determine the importance of specific Cys residues for catalysis and structure of the HA synthase from Streptococcus pyogenes (spHAS). The enzyme activity of spHAS was partially inhibited by cysteine-reactive chemical reagents such as N-ethylmaleimide. Quantitation of the number of Cys residues modified by these reagents, using MALDI-TOF mass spectrometry, demonstrated that there are no stable disulfide bonds in spHAS. The six Cys residues of spHAS were then mutated, individually and in various combinations, to serine or alanine. The single Cys-mutants were all kinetically similar to the wild-type enzyme in terms of their Vmax and Km values for HA synthesis. The Cys-null mutant, in which all Cys residues were mutated to alanine, retained ∼66% of wild-type activity, demonstrating that despite their high degree of conservation within the HAS family, Cys residues are not absolutely necessary for HA biosynthesis by the spHAS enzyme.
PMCID: PMC4042541  PMID: 11805074
Key words: cysteine residues/disulfide bonds/HA biosynthesis/mutagenesis/synthase
23.  Molecular Cloning and Functional Expression of the Rat 175-kDa Hyaluronan Receptor for Endocytosis 
Molecular Biology of the Cell  2002;13(8):2853-2868.
We recently purified the rat liver hyaluronan receptor for endocytosis (HARE) and found abundant expression of 175- and ∼300-kDa HARE species in sinusoidal endothelial cells of the liver, spleen, and lymph nodes. We report herein the first cloning and functional expression of the rat 175-kDa HARE. Peptide sequences were obtained from the purified 175-kDa HARE, and degenerate oligonucleotide primers were designed for reverse transcription-polymerase chain reaction and cDNA cloning. Results of 5′-rapid amplification of cDNA ends, Northern analysis, N-terminal sequence, and antibody reactivity analyses indicated the absence of mRNA directly encoding the 175-kDa HARE. This protein is most likely derived from a larger precursor. Accordingly, we constructed an artificial 4.7-kb cDNA encoding the 1431 amino acid 175-kDa HARE. The predicted type I membrane protein has a mass of 156,393 Da and a pI of 7.86. The 175-kDa HARE cDNA, fused to the N-terminal leader sequence of the Ig κ-chain, was transfected transiently into COS-7 cells and stably into SK-Hep-1 cells, respectively, to assess hyaluronan or hyaluronic acid (HA)-binding activity and endocytosis. In both cases, HARE expression and HA-binding activity were detected. Furthermore, stable SK-175HARE cells demonstrated specific endocytosis of 125I-HA and receptor recycling. Fluorescence-activated cell sorting analysis confirmed that recombinant HARE was expressed on the cell surface and that fluorescent HA uptake was inhibited by a specific blocking monoclonal antibody against HARE. Additionally, HARE was substantially colocalized with clathrin, but not with internalized HA that was delivered to lysosomes. The results confirm that recombinant 175-kDa HARE is an authentic endocytic receptor for HA and that this receptor can function independently of the ∼300-kDa HARE. HARE is the first functionally identified member of a protein family that shares a similar organization of Fasciclin, epidermal growth factor-like, Xlink, and transmembrane domains.
doi:10.1091/mbc.02-03-0048
PMCID: PMC117947  PMID: 12181351

Results 1-23 (23)