PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles 
Structure(London, England:1993)  2011;19(12):1762-1772.
SUMMARY
The hematopoietic Colony Stimulating Factor-1 receptor (CSF-1R or FMS) is essential for the development of diverse cell types central to the immune system. Here we report a structural and mechanistic consensus for the assembly of hematopoietic human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts that contribute 15-fold to the affinity of the complex, and striking structural plasticity at the extremities of the complex. Small-angle X-ray scattering analysis of unliganded hCSF-1R points to large domain rearrangements upon CSF-1 binding, and provides structural evidence for the relevance of receptor predimerization at the cell-surface. Comparative structural and binding studies of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor is a common denominator in complex formation independent of receptor homotypic interactions.
doi:10.1016/j.str.2011.10.012
PMCID: PMC3260422  PMID: 22153499
2.  Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins 
BMC Biochemistry  2011;12:59.
Background
The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA), and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences.
Results
Lipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal structure of one of the GbpA family outliers from H. parasuis. Comparisons thereof with the previously determined structure of GbpA in complex with oxidized glutathione reveals the structural basis for the lack of allocrite binding capacity, thereby explaining the outlier behavior.
Conclusions
Taken together, our studies provide for the first time a collective functional look on a novel, Pasteurellaceae-specific, SBP subfamily of glutathione binding proteins, which we now term GbpA proteins. Our studies strongly implicate GbpA family SBPs in the priming step of ABC-transporter-mediated translocation of useful forms of glutathione across the inner membrane, and rule out a general role for GbpA proteins in heme acquisition.
doi:10.1186/1471-2091-12-59
PMCID: PMC3295651  PMID: 22087650
glutathione; GbpA; HbpA; DppA; solute-binding protein; SBP; ABC transporter
3.  Expression, purification, crystallization and preliminary X-ray crystallographic studies of a cold-adapted aspartate carbamoyltransferase from Moritella profunda  
Crystals of the aspartate carbamoyltransferase of the psychrophile M. profunda diffract X-rays to 2.85 Å. Three catalytic and three regulatory subunits are predicted per asymmetric unit.
Aspartate carbamoyltransferase (ATCase) catalyzes the carbamoylation of the α-amino group of l-aspartate by carbamoyl phosphate (CP) to yield N-­carbamoyl-l-aspartate and orthophosphate in the first step of de novo pyrimidine biosynthesis. Apart from its key role in nucleotide metabolism, the enzyme is generally regarded as a model system in the study of proteins exhibiting allosteric behaviour. Here, the successful preparation, crystallization and diffraction data collection of the ATCase from the psychrophilic bacterium Moritella profunda are reported. To date, there is no structural representative of a cold-adapted ATCase. The structure of M. profunda ATCase is thus expected to provide important insights into the molecular basis of allosteric activity at low temperatures. Furthermore, through comparisons with the recently reported structure of an extremely thermostable ATCase from Sulfolobus acidocaldarius, it is hoped to contribute to general principles governing protein adaptation to extreme environments. A complete native data to 2.85 Å resolution showed that the crystal belongs to space group P3221, with unit-cell parameters a = 129.25, b = 129.25, c = 207.23 Å, α = β = 90, γ = 120°, and that it contains three catalytic and three regulatory subunits per asymmetric unit. The three-dimensional structure of the Escherichia coli ATCase was sufficient to solve the structure of the M. profunda ATCase via the molecular-replacement method and to obtain electron density of good quality.
doi:10.1107/S174430910500285X
PMCID: PMC1952289  PMID: 16511017
aspartate carbamoyltransferase; psychrophilic enzymes; allosteric regulation; PHASER
4.  Hydrogen peroxide scavenging is not a virulence determinant in the pathogenesis of Haemophilus influenzae type b strain Eagan 
BMC Microbiology  2006;6:3.
Background
A potentially lethal flux of hydrogen peroxide (H2O2) is continuously generated during aerobic metabolism. It follows that aerobic organisms have equipped themselves with specific H2O2 dismutases and H2O2 reductases, of which catalase and the alkyl hydroperoxide reductase (AhpR) are the best-studied prokaryotic members. The sequenced Haemophilus influenzae Rd genome reveals one catalase, designated HktE, and no AhpR. However, Haemophilus influenzae type b strain Eagan (Hib), a causative agent of bacterial sepsis and meningitis in young children, disrupted in its hktE gene is not attenuated in virulence, and retains the ability to rapidly scavenge H2O2. This redundancy in H2O2-scavenging is accounted for by peroxidatic activity which specifically uses glutathione as the reducing substrate.
Results
We show here that inside acatalasaemic H. influenzae all of the residual peroxidatic activity is catalyzed by PGdx, a hybrid peroxiredoxin-glutaredoxin glutathione-dependent peroxidase. In vitro kinetic assays on crude hktE- pgdx- H. influenzae Rd extracts revealed the presence of NAD(P)H:peroxide oxidoreductase activity, which, however, appears to be physiologically insignificant because of its low affinity for H2O2 (Km = 1.1 mM). Hydroperoxidase-deficient hktE- pgdx- H. influenzae Rd showed a slightly affected aerobic growth phenotype in rich broth, while, in chemically defined medium, growth was completely inhibited by aerobic conditions, unless the medium contained an amino acid/vitamin supplement. To study the role of PGdx in virulence and to assess the requirement of H2O2-scavenging during the course of infection, both a pgdx single mutant and a pgdx/hktE double mutant of Hib were assayed for virulence in an infant rat model. The ability of both mutant strains to cause bacteremia was unaffected.
Conclusion
Catalase (HktE) and a sole peroxidase (PGdx) account for the majority of scavenging of metabolically generated H2O2 in the H. influenzae cytoplasm. Growth experiments with hydroperoxidase-deficient hktE- pgdx- H. influenzae Rd suggest that the cytotoxicity inflicted by the continuous accumulation of H2O2 during aerobic growth brings about bacteriostasis rather than bacterial killing. Finally, H2O2-scavenging is not a determinant of Hib virulence in the infant rat model of infection.
doi:10.1186/1471-2180-6-3
PMCID: PMC1361801  PMID: 16430767
5.  Glutathione and Catalase Provide Overlapping Defenses for Protection against Respiration-Generated Hydrogen Peroxide in Haemophilus influenzae 
Journal of Bacteriology  2003;185(18):5555-5562.
Glutathione is an abundant and ubiquitous low-molecular-weight thiol that may play a role in many cellular processes, including protection against the deleterious effects of reactive oxygen species. We address here the role of glutathione in protection against hydrogen peroxide (H2O2) in Haemophilus influenzae and show that glutathione and catalase provide overlapping defense systems. H. influenzae is naturally glutathione deficient and imports glutathione from the growth medium. Mutant H. influenzae lacking catalase and cultured in glutathione-deficient minimal medium is completely devoid of H2O2 scavenging activity and, accordingly, substantial amounts of H2O2 accumulate in the growth medium. H. influenzae generates H2O2 at rates similar to those reported for Escherichia coli, but the toxicity of this harmful metabolite is averted by glutathione-based H2O2 removal, which appears to be the primary system for protection against H2O2 endogenously generated during aerobic respiration. When H2O2 concentrations exceed low micromolar levels, the hktE gene-encoded catalase becomes the predominant scavenger. The requirement for glutathione in protection against oxidative stress is analogous to that in higher and lower eukaryotes but is unlike the situation in other bacteria in which glutathione is dispensable for aerobic growth during both normal and oxidative stress conditions.
doi:10.1128/JB.185.18.5555-5562.2003
PMCID: PMC193741  PMID: 12949108
6.  Exogenous Glutathione Completes the Defense against Oxidative Stress in Haemophilus influenzae 
Journal of Bacteriology  2003;185(5):1572-1581.
Since they are equipped with several strategies by which they evade the antimicrobial defense of host macrophages, it is surprising that members of the genus Haemophilus appear to be deficient in common antioxidant systems that are well established to protect prokaryotes against oxidative stress. Among others, no genetic evidence for glutathione (γ-Glu-Cys-Gly) (GSH) biosynthesis or for alkyl hydroperoxide reduction (e.g., the Ahp system characteristic or enteric bacteria) is apparent from the Haemophilus influenzae Rd genome sequence, suggesting that the organism relies on alternative systems to maintain redox homeostasis or to reduce small alkyl hydroperoxides. In this report we address this apparent paradox for the nontypeable H. influenzae type strain NCTC 8143. Instead of biosynthesis, we could show that this strain acquires GSH by importing the thiol tripeptide from the growth medium. Although such GSH accumulation had no effect on growth rates, the presence of cellular GSH protected against methylglyoxal, tert-butyl hydroperoxide (t-BuOOH), and S-nitrosoglutathione toxicity and regulated the activity of certain antioxidant enzymes. H. influenzae NCTC 8143 extracts were shown to contain GSH-dependent peroxidase activity with t-BuOOH as the peroxide substrate. The GSH-mediated protection against t-BuOOH stress is most probably catalyzed by the product of open reading frame HI0572 (Prx/Grx), which we isolated from a genomic DNA fragment that confers wild-type resistance to t-BuOOH toxicity in the Ahp-negative Escherichia coli strain TA4315 and that introduces GSH-dependent alkyl hydroperoxide reductase activity into naturally GSH peroxidase-negative E. coli. Finally, we demonstrated that cysteine is an essential amino acid for growth and that cystine, GSH, glutathione amide, and cysteinylglycine can be catabolized in order to complement cysteine deficiency.
doi:10.1128/JB.185.5.1572-1581.2003
PMCID: PMC148052  PMID: 12591874

Results 1-6 (6)