PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Toward a Hepatitis C Virus Vaccine: the Structural Basis of Hepatitis C Virus Neutralization by AP33, a Broadly Neutralizing Antibody 
Journal of Virology  2012;86(23):12923-12932.
The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a β-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.
doi:10.1128/JVI.02052-12
PMCID: PMC3497650  PMID: 22993159
2.  Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin–neuraminidase glycoprotein 
Glycobiology  2011;22(2):174-180.
The hemagglutinin–neuraminidase (HN) glycoprotein is utilized by human parainfluenza viruses for binding to the host cell. By the use of glycan array assays, we demonstrate that, in addition to the first catalytic-binding site, the HN of human parainfluenza virus type 1 has a second site for binding covered by N-linked glycan. Our data suggest that attachment of the first site to sialic acid (SA)-linked receptors triggers exposure of the second site. We found that both sites bind to α2-3-linked SAs with a preference for a sialyl-Lewisx motif. Binding to α2-3-linked SAs with a sulfated sialyl-Lewis motif as well as to α2-8-linked SAs was unique for the second binding site. Neither site recognizes α2-6-linked oligosaccharides.
doi:10.1093/glycob/cwr112
PMCID: PMC3255505  PMID: 21846691
binding; glycan array; hemagglutinin–neuraminidase; parainfluenza; receptor
3.  Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases 
BMC Biochemistry  2012;13:19.
Backgrounds
Streptococcus pneumoniae expresses three distinct sialidases, NanA, NanB, and NanC, that are believed to be key virulence factors and thus, potential important drug targets. We previously reported that the three enzymes release different products from sialosides, but could share a common catalytic mechanism before the final step of product formation. However, the kinetic investigations of the three sialidases have not been systematically done thus far, due to the lack of an easy and steady measurement of sialidase reaction rate.
Results
In this work, we present further kinetic characterization of pneumococcal sialidases by using a direct spectrophotometric method with the chromogenic substrate p-nitrophenyl-N-acetylneuraminic acid (p-NP-Neu5Ac). Using our assay, the measured kinetic parameters of the three purified pneumococcal sialidase, NanA, NanB and NanC, were obtained and were in perfect agreement with the previously published data. The major advantage of this alternative method resides in the direct measurement of the released product, allowing to readily determine of initial reaction rates and record complete hydrolysis time courses.
Conclusion
We developed an accurate, fast and sensitive spectrophotometric method to investigate the kinetics of sialidase-catalyzed reactions. This fast, sensitive, inexpensive and accurate method could benefit the study of the kinetics and inhibition of sialidases in general.
doi:10.1186/1471-2091-13-19
PMCID: PMC3483245  PMID: 23031230
Sialidase; Neuraminidase; Chromogenic sialic acids; Kinetic assay; Streptococcus pneumoniae
4.  Introduction to phasing 
This introductory paper to the CCP4 weekend on experimental phasing introduces the concept of the ‘phase problem’ for non-experts. Modern methods of phasing are explored, including some recent examples that can be downloaded as tutorials.
When collecting X-ray diffraction data from a crystal, we measure the intensities of the diffracted waves scattered from a series of planes that we can imagine slicing through the crystal in all directions. From these intensities we derive the amplitudes of the scattered waves, but in the experiment we lose the phase information; that is, how we offset these waves when we add them together to reconstruct an image of our molecule. This is generally known as the ‘phase problem’. We can only derive the phases from some knowledge of the molecular structure. In small-molecule crystallography, some basic assumptions about atomicity give rise to relationships between the amplitudes from which phase information can be extracted. In protein crystallography, these ab initio methods can only be used in the rare cases in which there are data to at least 1.2 Å resolution. For the majority of cases in protein crystallography phases are derived either by using the atomic coordinates of a structurally similar protein (molecular replacement) or by finding the positions of heavy atoms that are intrinsic to the protein or that have been added (methods such as MIR, MIRAS, SIR, SIRAS, MAD, SAD or com­binations of these). The pioneering work of Perutz, Kendrew, Blow, Crick and others developed the methods of isomorphous replacement: adding electron-dense atoms to the protein without disturbing the protein structure. Nowadays, methods from small-molecule crystallography can be used to find the heavy-atom substructure and the phases for the whole protein can be bootstrapped from this prior knowledge. More recently, improved X-ray sources, detectors and software have led to the routine use of anomalous scattering to obtain phase information from either incorporated selenium or intrinsic sulfurs. In the best cases, only a single set of X-ray data (SAD) is required to provide the positions of the anomalous scatters, which together with density-modification procedures can reveal the structure of the complete protein.
doi:10.1107/S0907444910006694
PMCID: PMC2852296  PMID: 20382985
phasing
5.  Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase 
Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K.
Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K. The protein crystallizes in a primitive triclinic lattice, with unit-cell parameters a = 45.3, b = 60.5, c = 117.6 Å, α = 87.2, β = 81.2, γ = 68.4°. A complete data set has been collected to 2.3 Å resolution at the ESRF. Consideration of the likely solvent content suggested the asymmetric unit to contain four molecules. This has been confirmed by molecular-replacement phasing calculations, which give a solution with four monomers using a monomer of pantothenate synthetase from Escherichia coli (PDB code 1iho), which is 41% identical to Sar2676, as a search model.
doi:10.1107/S1744309107020362
PMCID: PMC2335074  PMID: 17554169
Sar2676; pantothenate synthetase; methicillin-resistant Staphylococcus aureus
6.  Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase 
As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported.
Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P212121. A complete data set was collected to 2.5 Å resolution.
doi:10.1107/S1744309107019562
PMCID: PMC2335000  PMID: 17565195
Sar2028; Staphylococcus aureus; aminotransferases
7.  Structure of the catalytic domain of Streptococcus pneumoniae sialidase NanA 
The structure of a catalytically active subdomain of the NanA sialidase from S. pneumoniae is reported to a resolution of 2.5 Å. The complex with the inhibitor Neu5Ac2en identifies the key catalytic residues and provides a platform for structure-based development of specific inhibitors.
Streptococcus pneumoniae genomes encode three sialidases, NanA, NanB and NanC, which are key virulence factors that remove sialic acids from various glycoconjugates. The enzymes have potential as drug targets and also as vaccine candidates. The 115 kDa NanA is the largest of the three sialidases and is anchored to the bacterial membrane. Although recombinantly expressed full-length NanA was soluble, it failed to crystallize; therefore, a 56.5 kDa domain that retained full enzyme activity was subcloned. The purified enzyme was crystallized in 0.1 M MES pH 6.5, 30%(w/v) PEG 4000 using the sitting-drop vapour-diffusion method. Data were collected at 100 K to 2.5 Å resolution from a crystal grown in the presence of the inhibitor 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid. The crystal belongs to space group P212121, with unit-cell parameters a = 49.2, b = 95.6, c = 226.6 Å. The structure was solved by molecular replacement and refined to final R and R free factors of 0.246 and 0.298, respectively.
doi:10.1107/S1744309108024044
PMCID: PMC2531273  PMID: 18765901
NanA; sialidases; Streptococcus pneumoniae
8.  Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain 
Background
IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region.
Results
The crystal structure of human IPS-1/MAVS/VISA/Cardif CARD has been determined to 2.1Å resolution. The protein was expressed and crystallized as a maltose-binding protein (MBP) fusion protein. The MBP and IPS-1 components each form a distinct domain within the structure. IPS-1/MAVS/VISA/Cardif CARD adopts a characteristic six-helix bundle with a Greek-key topology and, in common with a number of other known CARD structures, contains two major polar surfaces on opposite sides of the molecule. One face has a surface-exposed, disordered tryptophan residue that may explain the poor solubility of untagged expression constructs.
Conclusion
The IPS-1/MAVS/VISA/Cardif CARD domain adopts the classic CARD fold with an asymmetric surface charge distribution that is typical of CARD domains involved in homotypic protein-protein interactions. The location of the two polar areas on IPS-1/MAVS/VISA/Cardif CARD suggest possible types of associations that this domain makes with the two CARD domains of MDA5 or RIG-I. The N-terminal CARD domains of RIG-I and MDA5 share greatest sequence similarity with IPS-1/MAVS/VISA/Cardif CARD and this has allowed modelling of their structures. These models show a very different charge profile for the equivalent surfaces compared to IPS-1/MAVS/VISA/Cardif CARD.
doi:10.1186/1472-6807-8-11
PMCID: PMC2291057  PMID: 18307765
9.  Preliminary crystallographic studies of glucose dehydrogenase from the promiscuous Entner–Doudoroff pathway in the hyperthermophilic archaeon Sulfolobus solfataricus  
A glucose dehydrogenase from the hyperthermophilic archaeon S. solfataricus has been crystallized and subjected to preliminary crystallographic analysis.
The hyperthermophilic archaeon Sulfolobus solfataricus grows optimally above 353 K and can metabolize glucose and its C4 epimer galactose via a non-phosphorylative variant of the Entner–Doudoroff pathway involving catalytically promiscuous enzymes that can operate with both sugars. The initial oxidation step is catalysed by glucose dehydrogenase (SsGDH), which can utilize both NAD and NADP as cofactors. The enzyme operates with glucose and galactose at similar catalytic efficiency, while its substrate profile also includes a range of other five- and six-carbon sugars. Crystals of the 164 kDa SsGDH homotetramer have been grown under a variety of conditions. The best crystals to date diffract to 1.8 Å on a synchrotron source, have orthorhombic symmetry and belong to space group P21212. Attempts are being made to solve the structure by MAD and MR.
doi:10.1107/S174430910403101X
PMCID: PMC1952374  PMID: 16508107
Sulfolobus solfataricus; glucose dehydrogenase; Entner–Doudoroff pathway
10.  Crystallization of Ranasmurfin, a blue-coloured protein from Polypedates leucomystax  
A novel blue protein from frog nests has been crystallized.
Ranasmurfin, a previously uncharacterized ∼13 kDa blue protein found in the nests of the frog Polypedates leucomystax, has been purified and crystallized. The crystals are an intense blue colour and diffract to 1.51 Å with P21 symmetry and unit-cell parameters a = 40.9, b = 59.9, c = 45.0 Å, β = 93.3°. Self-rotation function analysis indicates the presence of a dimer in the asymmetric unit. Biochemical data suggest that the blue colour of the protein is related to dimer formation. Sequence data for the protein are incomplete, but thus far have identified no model for molecular replacement. A fluorescence scan shows a peak at 9.676 keV, indicating that the protein binds zinc and suggesting a route for structure solution.
doi:10.1107/S1744309106040036
PMCID: PMC2225219  PMID: 17077494
Ranasmurfin
11.  Structure of the heterotrimeric PCNA from Sulfolobus solfataricus  
The structure of the heterotrimeric PCNA complex from S. sulfataricus is reported to 2.3 Å.
PCNA is a ring-shaped protein that encircles DNA, providing a platform for the association of a wide variety of DNA-processing enzymes that utilize the PCNA sliding clamp to maintain proximity to their DNA substrates. PCNA is a homotrimer in eukaryotes, but a heterotrimer in crenarchaea such as Sulfolobus solfataricus. The three proteins are SsoPCNA1 (249 residues), SsoPCNA2 (245 residues) and SsoPCNA3 (259 residues). The heterotrimeric protein crystallizes in space group P21, with unit-cell parameters a = 44.8, b = 78.8, c = 125.6 Å, β = 100.5°. The crystal structure of this heterotrimeric PCNA molecule has been solved using molecular replacement. The resulting structure to 2.3 Å sheds light on the differential stabilities of the interactions observed between the three subunits and the specificity of individual subunits for partner proteins.
doi:10.1107/S1744309106034075
PMCID: PMC2225174  PMID: 17012780
PCNA; Sulfolobus solfataricus
12.  Role of the Hemagglutinin-Neuraminidase Protein in the Mechanism of Paramyxovirus-Cell Membrane Fusion 
Journal of Virology  2002;76(24):13028-13033.
Paramyxovirus infects cells by initially attaching to a sialic acid-containing cellular receptor and subsequently fusing with the plasma membrane of the cells. Hemagglutinin-neuraminidase (HN) protein, which is responsible for virus attachment, interacts with the fusion protein in a virus type-specific manner to induce efficient membrane fusion. To elucidate the mechanism of HN-promoted membrane fusion, we characterized a series of Newcastle disease virus HN proteins whose surface residues were mutated. Fusion promotion activity was substantially altered in only the HN proteins with a mutation in the first or sixth β sheet. These regions overlap the large hydrophobic surface of HN; thus, the hydrophobic surface may contain the fusion promotion domain. Furthermore, a comparison of the HN structure crystallized alone or in complex with 2-deoxy-2,3-dehydro-N-acetylneuraminic acid revealed substantial conformational changes in several loops within or near the hydrophobic surface. Our results suggest that the binding of HN protein to the receptor induces the conformational change of residues near the hydrophobic surface of HN protein and that this change triggers the activation of the F protein, which initiates membrane fusion.
doi:10.1128/JVI.76.24.13028-13033.2002
PMCID: PMC136693  PMID: 12438628
13.  The Scottish Structural Proteomics Facility: targets, methods and outputs 
The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.
Electronic supplementary material
The online version of this article (doi:10.1007/s10969-010-9090-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s10969-010-9090-y
PMCID: PMC2883930  PMID: 20419351
High-throughput; Protein crystallography; Structural proteomics; SSPF

Results 1-13 (13)