PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production 
PLoS ONE  2015;10(1):e0115314.
Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.
doi:10.1371/journal.pone.0115314
PMCID: PMC4304716  PMID: 25615871
2.  Changing the light environment: chloroplast signalling and response mechanisms 
Light is an essential environmental factor required for photosynthesis, but it also mediates signals to control plant development and growth and induces stress tolerance. The photosynthetic organelle (chloroplast) is a key component in the signalling and response network in plants. This theme issue of Philosophical Transactions of the Royal Society of London B: Biology provides updates, highlights and summaries of the most recent findings on chloroplast-initiated signalling cascades and responses to environmental changes, including light and biotic stress. Besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy.
doi:10.1098/rstb.2013.0220
PMCID: PMC3949385  PMID: 24591707
3.  Function and evolution of channels and transporters in photosynthetic membranes 
Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.
Electronic supplementary material
The online version of this article (doi:10.1007/s00018-013-1412-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s00018-013-1412-3
PMCID: PMC3928508  PMID: 23835835
Channel; Chloroplast; Cyanobacteria; Phylogeny; Thylakoid membrane; Transporter
4.  Photosystem II Function and Dynamics in Three Widely Used Arabidopsis thaliana Accessions 
PLoS ONE  2012;7(9):e46206.
Columbia-0 (Col-0), Wassilewskija-4 (Ws-4), and Landsberg erecta-0 (Ler-0) are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL). The photosystem II (PSII) complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis mutants, and also provide the first insights into natural variation of PSII protein phosphorylation.
doi:10.1371/journal.pone.0046206
PMCID: PMC3460815  PMID: 23029436
5.  The intrinsic GTPase activity of the Gtr1 protein from Saccharomyces cerevisiae 
BMC Biochemistry  2012;13:11.
Background
The Gtr1 protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. Particularly, the Switch regions in the GTPase domain of Gtr1 are essential for TORC1 activation and amino acid signaling. Therefore, knowledge about the biochemical activity of Gtr1 is required to understand its mode of action and regulation.
Results
By employing tryptophan fluorescence analysis and radioactive GTPase assays, we demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant.
Conclusions
The extremely low intrinsic GTPase activity of Gtr1 implies requirement for interaction with activating proteins to support its physiological function. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.
doi:10.1186/1471-2091-13-11
PMCID: PMC3477016  PMID: 22726655
Gtr1; GTPase; Intrinsic tryptophan fluorescence; Rag GTPase; Cysteine mutagenesis; Switch region
6.  Phylogenetic Analysis of the Thylakoid ATP/ADP Carrier Reveals New Insights into Its Function Restricted to Green Plants 
ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae, and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membrane transporters. One major type of ATP transporters is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC). Thus far, no orthologs of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae, and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogeneously distributed in a thylakoid membrane system composed of appressed and non-appressed regions.
doi:10.3389/fpls.2011.00110
PMCID: PMC3355511  PMID: 22629269
green alga; chloroplast; plant; photosynthesis; ADP/ATP carrier; thylakoid; TAAC phylogeny
7.  Solute transporters in plant thylakoid membranes 
Plants utilize sunlight to drive photosynthetic energy conversion in the chloroplast thylakoid membrane. Here are located four major photosynthetic complexes, about which we have great knowledge in terms of structure and function. However, much less we know about auxiliary proteins, such as transporters, ensuring an optimum function and turnover of these complexes. The most prominent thylakoid transporter is the proton-translocating ATP-synthase. Recently, four additional transporters have been identified in the thylakoid membrane of Arabidopsis thaliana, namely one copper-transporting P-ATPase, one chloride channel, one phosphate transporter, and one ATP/ADP carrier. Here, we review the current knowledge on the function and physiological role of these transporters during photosynthesis and light stress in plants. Subsequently, we make a survey on the outlook of thylakoid activities awaiting identification of responsible proteins. Such knowledge is necessary to understand the thylakoid network of transporters, and to design strategies for bioengineering crop plants in the future.
PMCID: PMC2889967  PMID: 20585503
Arabidopsis; photosynthesis; light stress; thylakoid; photosystem; membrane transporter; ATPase; ion channel; carrier
8.  Functionally Important Amino Acids in the Arabidopsis Thylakoid Phosphate Transporter: Homology Modeling and Site-Directed Mutagenesis† 
Biochemistry  2010;49(30):6430-6439.
The anion transporter 1 (ANTR1) from Arabidopsis thaliana, homologous to the mammalian members of the solute carrier 17 (SLC17) family, is located in the chloroplast thylakoid membrane. When expressed heterologously in Escherichia coli, ANTR1 mediates a Na+-dependent active transport of inorganic phosphate (Pi). The aim of this study was to identify amino acid residues involved in Pi binding and translocation by ANTR1 and in the Na+ dependence of its activity. A three-dimensional structural model of ANTR1 was constructed using the crystal structure of glycerol 3-phosphate/phosphate antiporter from E. coli as a template. Based on this model and multiple sequence alignments, five highly conserved residues in plant ANTRs and mammalian SLC17 homologues have been selected for site-directed mutagenesis, namely, Arg-120, Ser-124, and Arg-201 inside the putative translocation pathway and Arg-228 and Asp-382 exposed at the cytoplasmic surface of the protein. The activities of the wild-type and mutant proteins have been analyzed using expression in E. coli and radioactive Pi transport assays and compared with bacterial cells carrying an empty plasmid. The results from Pi- and Na+-dependent kinetics indicate the following: (i) Arg-120 and Arg-201 may be important for binding and translocation of the substrate; (ii) Ser-124 may function as a transient binding site for Na+ ions in close proximity to the periplasmic side; (iii) Arg-228 and Asp-382 may participate in interactions associated with protein conformational changes required for full transport activity. Functional characterization of ANTR1 should provide useful insights into the function of other plant and mammalian SLC17 homologous transporters.
doi:10.1021/bi100239j
PMCID: PMC2911078  PMID: 20565143

Results 1-8 (8)