Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Fungal bis-Naphthopyrones as Inhibitors of Botulinum Neurotoxin Serotype A 
ACS Medicinal Chemistry Letters  2012;3(5):387-391.
An in silico screen of the NIH Molecular Library Small Molecule Repository (MLSMR) of ∼350000 compounds and confirmatory bioassays led to identification of chaetochromin A (1) as an inhibitor of botulinum neurotoxin serotype A (BoNT A). Subsequent acquisition and testing of analogues of 1 uncovered two compounds, talaroderxines A (2) and B (3), with improved activity. These are the first fungal metabolites reported to exhibit BoNT/A inhibitory activity.
PMCID: PMC4025784  PMID: 24900483
in silico screen; botulinum neurotoxin serotype A; natural products; chaetochromin; talaroderxine; binding free energy; thermodynamic integration
2.  Discovery of a Novel Enzymatic Cleavage Site for Botulinum Neurotoxin F5 
Febs Letters  2011;586(2):109-115.
Botulinum neurotoxins (BoNTs) cause botulism by cleaving proteins necessary for nerve transmission. There are seven serotypes of BoNT, A-G, characterized by their response to antisera. Many serotypes are further distinguished into differing subtypes based on amino acid sequence some of which result in functional differences. Our laboratory previously reported that all tested subtypes within each serotype have the same site of enzymatic activity. Recently, three new subtypes of BoNT/F; /F3, /F4, and /F5, were reported. Here, we report that BoNT/F5 cleaves substrate synaptobrevin-2 in a different location than the other BoNT/F subtypes, between 54L and 55E. This is the first report of cleavage of synaptobrevin-2 in this location.
PMCID: PMC3263758  PMID: 22172278
3.  Military vaccines in today’s environment 
Human Vaccines & Immunotherapeutics  2012;8(8):1126-1128.
The US military has a long and highly distinguished record of developing effective vaccines against pathogens that threaten the armed forces. Many of these vaccines have also been of significant benefit to civilian populations around the world. The current requirements for force protection include vaccines against endemic disease threats as well as against biological warfare or bioterrorism agents, to include novel or genetically engineered threats. The cost of vaccine development and the modern regulatory requirements for licensing vaccines have strained the ability of the program to maintain this broad mission. Without innovative vaccine technologies, streamlined regulatory strategies, and coordinating efforts for use in civilian populations where appropriate, the military vaccine development program is in jeopardy.
PMCID: PMC3551885  PMID: 22854669
vaccines; infectious diseases; military; biological warfare; bioterrorism
4.  Tyrosine Phosphorylation of Botulinum Neurotoxin Protease Domains 
Botulinum neurotoxins are most potent of all toxins. Their N-terminal light chain domain (Lc) translocates into peripheral cholinergic neurons to exert its endoproteolytic action leading to muscle paralysis. Therapeutic development against these toxins is a major challenge due to their in vitro and in vivo structural differences. Although three-dimensional structures and reaction mechanisms are very similar, the seven serotypes designated A through G vastly vary in their intracellular catalytic stability. To investigate if protein phosphorylation could account for this difference, we employed Src-catalyzed tyrosine phosphorylation of the Lc of six serotypes namely LcA, LcB, LcC1, LcD, LcE, and LcG. Very little phosphorylation was observed with LcD and LcE but LcA, LcB, and LcG were maximally phosphorylated by Src. Phosphorylation of LcA, LcB, and LcG did not affect their secondary and tertiary structures and thermostability significantly. Phosphorylation of Y250 and Y251 made LcA resistant to autocatalysis and drastically reduced its kcat/Km for catalysis. A tyrosine residue present near the essential cysteine at the C-terminal tail of LcA, LcB, and LcG was readily phosphorylated in vitro. Inclusion of a competitive inhibitor protected Y426 of LcA from phosphorylation, shedding light on the role of the C-terminus in the enzyme’s substrate or product binding.
PMCID: PMC3366388  PMID: 22675300
botulinum neurotoxin; tyrosine phosphorylation; zinc endoporotease; protease; clostridium botulinum; protein phosphorylation
5.  Analysis of Clostridium botulinum Serotype E Strains by Using Multilocus Sequence Typing, Amplified Fragment Length Polymorphism, Variable-Number Tandem-Repeat Analysis, and Botulinum Neurotoxin Gene Sequencing▿ 
Applied and Environmental Microbiology  2011;77(24):8625-8634.
A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.
PMCID: PMC3233090  PMID: 22003031
6.  Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A 
ACS Medicinal Chemistry Letters  2011;2(5):396-401.
The racemic product of the Betti reaction of 5-chloro-8-hydroxyquinoline, benzaldehyde, and 2-aminopyridine was separated by chiral HPLC to determine which enantiomer inhibited botulinum neurotoxin serotype A. When the enantiomers unexpectedly proved to have comparable activity, the absolute structures of (+)-(R)-1 and (−)-(S)-1 were determined by comparison of calculated and observed circular dichroism spectra. Molecular modeling studies were undertaken in an effort to understand the observed bioactivity and revealed different ensembles of binding modes, with roughly equal binding energies, for the two enantiomers.
PMCID: PMC3217201  PMID: 22102940
Chiral resolution; Betti reaction products; TDDFT CD calculations; molecular docking; inhibition of botulinum neurotoxin
7.  The Need for Continued Development of Ricin Countermeasures 
Ricin toxin, an extremely potent and heat-stable toxin produced from the bean of the ubiquitous Ricinus communis (castor bean plant), has been categorized by the US Centers for Disease Control and Prevention (CDC) as a category B biothreat agent that is moderately easy to disseminate. Ricin has the potential to be used as an agent of biological warfare and bioterrorism. Therefore, there is a critical need for continued development of ricin countermeasures. A safe and effective prophylactic vaccine against ricin that was FDA approved for “at risk” individuals would be an important first step in assuring the availability of medical countermeasures against ricin.
PMCID: PMC3318197  PMID: 22536516
8.  Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A 
ACS medicinal chemistry letters  2011;2(5):396-401.
The racemic product of the Betti reaction of 5-chloro-8-hydroxyquinoline, benzaldehyde and 2-aminopyridine was separated by chiral HPLC to determine which enantiomer inhibited botulinum neurotoxin serotype A. When the enantiomers unexpectedly proved to have comparable activity, the absolute structures of (+)-(R)-1 and (−)-(S)-1 were determined by comparison of calculated and observed circular dichroism spectra. Molecular modeling studies were undertaken in an effort to understand the observed bioactivity and revealed different ensembles of binding modes, with roughly equal binding energies, for the two enantiomers.
PMCID: PMC3217201  PMID: 22102940
chiral resolution; Betti reaction products; TDDFT CD calculations; molecular docking; inhibition of botulinum neurotoxin
9.  De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics 
Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A–G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence, and many subtypes are further differentiated into toxin variants. Previous work in our laboratory described the use of a proteomics approach to distinguish subtype BoNT/A1 from BoNT/A2 where BoNT identities were confirmed after searching data against a database containing protein sequences of all known BoNT/A subtypes. We now describe here a similar approach to differentiate subtypes BoNT/B1, /B2, /B3, /B4, and /B5. Additionally, to identify new subtypes or hitherto unpublished amino acid substitutions, we created an amino acid substitution database covering every possible amino acid change. We used this database to differentiate multiple toxin variants within subtypes of BoNT/B1 and B2. More importantly, with our amino acid substitution database, we were able to identify a novel BoNT/B subtype, designated here as BoNT/B7. These techniques allow for subtype and strain level identification of both known and unknown BoNT/B rapidly with no DNA required.
FigureIdentification of an existing or new BoNT/B can be accomplished through MS/MS analysis of digestion fragments of the protein.
PMCID: PMC3309144  PMID: 22395449
Botulinum neurotoxin; Botulism; Mass spectrometry; Proteomics
10.  A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model 
PLoS ONE  2012;7(1):e29941.
Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.
PMCID: PMC3253120  PMID: 22238680
11.  Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies 
BMC Biochemistry  2011;12:58.
Botulism is caused by botulinum neurotoxins (BoNTs), extremely toxic proteins which can induce respiratory failure leading to long-term intensive care or death. Treatment for botulism includes administration of antitoxins, which must be administered early in the course of the intoxication; therefore, rapid determination of human exposure to BoNT is an important public health goal. In previous work, our laboratory reported on Endopep-MS, a mass spectrometry-based activity method for detecting and differentiating BoNT/A, /B, /E, and /F in clinical samples. We also demonstrated that antibody-capture is effective for purification and concentration of BoNTs from complex matrices such as clinical samples. However, some antibodies inhibit or neutralize the enzymatic activity of BoNT, so the choice of antibody for toxin extraction is critical.
In this work, we evaluated 24 anti-BoNT/B monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/B1, /B2, /B3, /B4, and /B5 and to extract those toxins. Among the mAbs, there were significant differences in ability to extract BoNT/B subtypes and inhibitory effect on BoNT catalytic activity. Some of the mAbs tested enhanced the in vitro light chain activity of BoNT/B, suggesting that BoNT/B may undergo conformational change upon binding some mAbs.
In addition to determining in vitro inhibition abilities of a panel of mAbs against BoNT/B1-/B5, this work has determined B12.2 and 2B18.2 to be the best mAbs for sample preparation before Endopep-MS. These mAb characterizations also have the potential to assist with mechanistic studies of BoNT/B protection and treatment, which is important for studying alternative therapeutics for botulism.
PMCID: PMC3250939  PMID: 22085466
12.  Different Substrate Recognition Requirements for Cleavage of Synaptobrevin-2 by Clostridium baratii and Clostridium botulinum Type F Neurotoxins▿  
Botulinum neurotoxins (BoNTs) cause botulism, which can be fatal if it is untreated. BoNTs cleave proteins necessary for nerve transmission, resulting in paralysis. The in vivo protein target has been reported for all seven serotypes of BoNT, i.e., serotypes A to G. Knowledge of the cleavage sites has led to the development of several assays to detect BoNT based on its ability to cleave a peptide substrate derived from its in vivo protein target. Most serotypes of BoNT can be subdivided into subtypes, and previously, we demonstrated that three of the currently known subtypes of BoNT/F cleave a peptide substrate, a shortened version of synaptobrevin-2, between Q58 and K59. However, our research indicated that Clostridium baratii type F toxin did not cleave this peptide. In this study, we detail experiments demonstrating that Clostridium baratii type F toxin cleaves recombinant synaptobrevin-2 in the same location as that cleaved by proteolytic F toxin. In addition, we demonstrate that Clostridium baratii type F toxin can cleave a peptide substrate based on the sequence of synaptobrevin-2. This peptide substrate is an N-terminal extension of the original peptide substrate used for detection of other BoNT/F toxins and can be used to detect four of the currently known BoNT/F subtypes by mass spectrometry.
PMCID: PMC3067225  PMID: 21169446
13.  Light Chain Separated from the Rest of the Type A Botulinum Neurotoxin Molecule Is the Most Catalytically Active Form 
PLoS ONE  2010;5(9):e12872.
Botulinum neurotoxins (BoNT) are the most potent of all toxins. The 50 kDa N-terminal endopeptidase catalytic light chain (LC) of BoNT is located next to its central, putative translocation domain. After binding to the peripheral neurons, the central domain of BoNT helps the LC translocate into cytosol where its proteolytic action on SNARE (soluble NSF attachment protein receptor) proteins blocks exocytosis of acetyl choline leading to muscle paralysis and eventual death. The translocation domain also contains 105 Å -long stretch of ∼100 residues, known as “belt,” that crosses over and wraps around the LC to shield the active site from solvent. It is not known if the LC gets dissociated from the rest of the molecule in the cytosol before catalysis. To investigate the structural identity of the protease, we prepared four variants of type A BoNT (BoNT/A) LC, and compared their catalytic parameters with those of BoNT/A whole toxin. The four variants were LC + translocation domain, a trypsin-nicked LC + translocation domain, LC + belt, and a free LC. Our results showed that Km for a 17-residue SNAP-25 (synaptosomal associated protein of 25 kDa) peptide for these constructs was not very different, but the turnover number (kcat) for the free LC was 6-100-fold higher than those of its four variants. Moreover, none of the four variants of the LC was prone to autocatalysis. Our results clearly demonstrated that in vitro, the LC minus the rest of the molecule is the most catalytically active form. The results may have implication as to the identity of the active, toxic moiety of BoNT/A in vivo.
PMCID: PMC2943925  PMID: 20877571
14.  Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS 
PLoS ONE  2010;5(8):e12237.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies.
PMCID: PMC2923190  PMID: 20808925
15.  Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects 
The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.
PMCID: PMC2862021  PMID: 20377846
16.  Circulating endothelial progenitor cells: a new approach to anti-aging medicine? 
Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function.
Endothelial precursor cells (EPC) provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects.
PMCID: PMC2804590  PMID: 20003528
17.  Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains 
BMC Biology  2009;7:66.
Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species.
Chromosome and plasmid sequences of several C. botulinum strains representing A, B, E and F serotypes and a C. butyricum type E strain were compared to examine their genomic organization, or synteny, and the location of the botulinum toxin complex genes. These comparisons identified synteny among proteolytic (Group I) strains or nonproteolytic (Group II) strains but not between the two Groups. The bont complex genes within the strains examined were not randomly located but found within three regions of the chromosome or in two specific sites within plasmids. A comparison of sequences from a Bf strain revealed homology to the plasmid pCLJ with similar locations for the bont/bv b genes but with the bont/a4 gene replaced by the bont/f gene. An analysis of the toxin cluster genes showed that many recombination events have occurred, including several events within the ntnh gene. One such recombination event resulted in the integration of the bont/a1 gene into the serotype toxin B ha cluster, resulting in a successful lineage commonly associated with food borne botulism outbreaks. In C. botulinum type E and C. butyricum type E strains the location of the bont/e gene cluster appears to be the result of insertion events that split a rarA, recombination-associated gene, independently at the same location in both species.
The analysis of the genomic sequences representing different strains reveals the presence of insertion sequence (IS) elements and other transposon-associated proteins such as recombinases that could facilitate the horizontal transfer of the bonts; these events, in addition to recombination among the toxin complex genes, have led to the lineages observed today within the neurotoxin-producing clostridia.
PMCID: PMC2764570  PMID: 19804621
18.  Identification and Biochemical Characterization of Small-Molecule Inhibitors of Clostridium botulinum Neurotoxin Serotype A▿ §  
An integrated strategy that combined in silico screening and tiered biochemical assays (enzymatic, in vitro, and ex vivo) was used to identify and characterize effective small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A (BoNT/A). Virtual screening was initially performed by computationally docking compounds of the National Cancer Institute (NCI) database into the active site of BoNT/A light chain (LC). A total of 100 high-scoring compounds were evaluated in a high-performance liquid chromatography (HPLC)-based protease assay using recombinant full-length BoNT/A LC. Seven compounds that significantly inhibited the BoNT/A protease activity were selected. Database search queries of the best candidate hit [7-((4-nitro-anilino)(phenyl)methyl)-8-quinolinol (NSC 1010)] were performed to mine its nontoxic analogs. Fifty-five analogs of NSC 1010 were synthesized and examined by the HPLC-based assay. Of these, five quinolinol derivatives that potently inhibited both full-length BoNT/A LC and truncated BoNT/A LC (residues 1 to 425) were selected for further inhibition studies in neuroblastoma (N2a) cell-based and tissue-based mouse phrenic nerve hemidiaphragm assays. Consistent with enzymatic assays, in vitro and ex vivo studies revealed that these five quinolinol-based analogs effectively neutralized BoNT/A toxicity, with CB 7969312 exhibiting ex vivo protection at 0.5 μM. To date, this is the most potent BoNT/A small-molecule inhibitor that showed activity in an ex vivo assay. The reduced toxicity and high potency demonstrated by these five compounds at the biochemical, cellular, and tissue levels are distinctive among the BoNT/A small-molecule inhibitors reported thus far. This study demonstrates the utility of a multidisciplinary approach (in silico screening coupled with biochemical testing) for identifying promising small-molecule BoNT/A inhibitors.
PMCID: PMC2715594  PMID: 19528275
19.  Extraction and Inhibition of Enzymatic Activity of Botulinum Neurotoxins/A1, /A2, and /A3 by a Panel of Monoclonal Anti-BoNT/A Antibodies 
PLoS ONE  2009;4(4):e5355.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing death or respiratory failure leading to long-term intensive care. Treatment includes serotype-specific antitoxins, which must be administered early in the course of the intoxication. Rapidly determining human exposure to BoNT is an important public health goal. In previous work, our laboratory focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating BoNT/A–G serotypes in buffer and BoNT/A, /B, /E, and /F in clinical samples. We have previously reported the effectiveness of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. Because some antibodies inhibit or neutralize the activity of BoNT, the choice of antibody with which to extract the toxin is critical. In this work, we evaluated a panel of 16 anti-BoNT/A monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/A1, /A2, and /A3 complex as well as the recombinant LC of A1. We also evaluated the same antibody panel for the ability to extract BoNT/A1, /A2, and /A3. Among the mAbs, there were significant differences in extraction efficiency, ability to extract BoNT/A subtypes, and inhibitory effect on BoNT catalytic activity. The mAbs binding the C-terminal portion of the BoNT/A heavy chain had optimal properties for use in the Endopep-MS assay.
PMCID: PMC2670495  PMID: 19399171
20.  Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine 
Vaccine  2007;25(43):7540-7548.
Botulinum neurotoxins cause botulism, a neuroparalytic disease in humans and animals. We constructed a replication-incompetent adenovirus encoding a synthesized codon-optimized gene for expression of the heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C). This recombinant human serotype 5 adenoviral vector (Ad5) was evaluated as a genetic vaccine candidate against botulism caused by BoNT/C in a mouse model. A one-time intramuscular injection with 105 to 2 × 107 pfu of adenoviral vectors elicited robust serum antibody responses against HC50 of BoNT/C as assessed by ELISA. Immune sera showed high potency in neutralizing the active BoNT/C in vitro. After a single dose of 2 × 107 pfu adenoviral vectors, the animals were completely protected against intraperitoneal challenge with 100 × MLD50 of active BoNT/C. The protective immunity appeared to be vaccine dose-dependent. The anti-toxin protective immunity could last for at least 7 months without a booster injection. In addition, we observed that pre-existing immunity to the wild type Ad5 in the host had no significant influence on the protective efficacy of vaccination. The data suggest that an adenovirus-vectored genetic vaccine is a highly efficient prophylaxis candidate against botulism.
PMCID: PMC2077857  PMID: 17897756
Botulism Vaccine; Protective immunity; Replication-incompetent adenovirus
21.  An alternative approach to combination vaccines: intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock 
Combination vaccines reduce the total number of injections required for each component administered separately and generally provide the same level of disease protection. Yet, physical, chemical, and biological interactions between vaccine components are often detrimental to vaccine safety or efficacy.
As a possible alternative to combination vaccines, we used specially designed microneedles to inject rhesus macaques with four separate recombinant protein vaccines for anthrax, botulism, plague and staphylococcal toxic shock next to each other just below the surface of the skin, thus avoiding potentially incompatible vaccine mixtures.
The intradermally-administered vaccines retained potent antibody responses and were well- tolerated by rhesus macaques. Based on tracking of the adjuvant, the vaccines were transported from the dermis to draining lymph nodes by antigen-presenting cells. Vaccinated primates were completely protected from an otherwise lethal aerosol challenge by Bacillus anthracis spores, botulinum neurotoxin A, or staphylococcal enterotoxin B.
Our results demonstrated that the physical separation of vaccines both in the syringe and at the site of administration did not adversely affect the biological activity of each component.
The vaccination method we describe may be scalable to include a greater number of antigens, while avoiding the physical and chemical incompatibilities encountered by combining multiple vaccines together in one product.
PMCID: PMC2543000  PMID: 18768085
22.  Differentiation of Clostridium botulinum Serotype A Strains by Multiple-Locus Variable-Number Tandem-Repeat Analysis▿ †  
Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks.
PMCID: PMC2227714  PMID: 18083878
23.  Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells 
Effective prophylaxis and treatment for infections caused by biological threat agents (BTA) rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs.
To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays.
We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the in vitro and in vivo findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized B. anthracis spores and 30 min post exposure to a bacterial toxin.
Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents.
PMCID: PMC2542375  PMID: 18667072
24.  Developement of serum-free media in CHO-DG44 cells using a central composite statistical design 
Cytotechnology  2007;54(1):57-68.
A serum free medium was developed for the production of recombinant antibody against Botulinum A (BoNTA) using dihydrofolate reductase deficient Chinese Hamster Ovary Cells (CHO-DG44) in suspension culture. An initial control basal medium was prepared, which was similar in composition to HAM’s F12: IMDM (1:1) supplemented with insulin, transeferrin, selenium and a lipid mixture. The vitamin concentration of the basal medium was twice that of HAM’s F12: IMDM (1:1). CHO-DG44 cells expressing S25 antibody grew from 2 × 105 cells to maximum cell density of 1.04 × 106 cells/ml after 5 days in this control medium. A central composite design was used to identify optimal levels and interaction among five groups of medium components. These five groups were glutamine, Essential Amino Acids (EAA), Non Essential Amino Acids (NEAA), Insulin, Transferrin, Selenium (ITS), and lipids. Fifty experiments were carried out in four batches, with two controls in each batch. There was little effect of ITS and Lipid concentrations over the range studied, and glutamine concentration showed a strong interaction with EAA. The optimal concentrations of the variables studied were 2.5 mM Glutamine, 7.4 mM (2×) EAA, 1.4 mM (0.5×) NEAA, 1× ITS supplement, 0.7× Lipids supplement. The maximum viable cell density attained in the optimized medium was 1.4 × 106 cells/ml, a 35% improvement over the control culture, while the final antibody titer attained was 22 ± 3.4 μg/mL, a 50% improvement.
PMCID: PMC2267511  PMID: 19003018
Response surface method; Media optimization
25.  Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids 
PLoS ONE  2007;2(12):e1271.
Clostridium botulinum and related clostridial species express extremely potent neurotoxins known as botulinum neurotoxins (BoNTs) that cause long-lasting, potentially fatal intoxications in humans and other mammals. The amino acid variation within the BoNT is used to categorize the species into seven immunologically distinct BoNT serotypes (A–G) which are further divided into subtypes. The BoNTs are located within two generally conserved gene arrangements known as botulinum progenitor complexes which encode toxin-associated proteins involved in toxin stability and expression.
Methodology/Principal Findings
Because serotype A and B strains are responsible for the vast majority of human botulism cases worldwide, the location, arrangement and sequences of genes from eight different toxin complexes representing four different BoNT/A subtypes (BoNT/A1-Ba4) and one BoNT/B1 strain were examined. The bivalent Ba4 strain contained both the BoNT/A4 and BoNT/bvB toxin clusters. The arrangements of the BoNT/A3 and BoNT/A4 subtypes differed from the BoNT/A1 strains and were similar to those of BoNT/A2. However, unlike the BoNT/A2 subtype, the toxin complex genes of BoNT/A3 and BoNT/A4 were found within large plasmids and not within the chromosome. In the Ba4 strain, both BoNT toxin clusters (A4 and bivalent B) were located within the same 270 kb plasmid, separated by 97 kb. Complete genomic sequencing of the BoNT/B1 strain also revealed that its toxin complex genes were located within a 149 kb plasmid and the BoNT/A3 complex is within a 267 kb plasmid.
Despite their size differences and the BoNT genes they contain, the three plasmids containing these toxin cluster genes share significant sequence identity. The presence of partial insertion sequence (IS) elements, evidence of recombination/gene duplication events, and the discovery of the BoNT/A3, BoNT/Ba4 and BoNT/B1 toxin complex genes within plasmids illustrate the different mechanisms by which these genes move among diverse genetic backgrounds of C. botulinum.
PMCID: PMC2092393  PMID: 18060065

Results 1-25 (30)