Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Correction: Comparative Study of the Labial Gland Secretion in Termites (Isoptera) 
PLoS ONE  2012;7(11):10.1371/annotation/c56eb874-fb41-4d90-9735-b84d593f32cd.
PMCID: PMC3935655
2.  Comparative Study of the Labial Gland Secretion in Termites (Isoptera) 
PLoS ONE  2012;7(10):e46431.
Labial glands are present in all castes and developmental stages of all termite species. In workers, their secretion contains a food-marking pheromone and digestive enzymes, while soldier secretion plays a defensive role. However, these functions were studied only in a limited set of species, and do not allow drawing general conclusions. Hence, we have investigated the chemical composition of the labial gland extracts from soldiers and workers in 15 termite species belonging to 6 families using an integrative approach based on proteomic and small-molecule profiling. We confirmed the presence of hydroquinone and cellulase in the labial glands of workers, and we identified new toxic compounds in soldiers and workers of several species. Our results highlight the dual role of labial gland secretion, i.e. the defensive role in soldiers and workers of several termite species, and the digestive function in workers.
PMCID: PMC3468581  PMID: 23071569
3.  Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro 
BMC Biochemistry  2012;13:3.
Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized. We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from Acarus siro, a medically important storage mite.
A. siro produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4 revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house dust mite group 4 allergens were found.
We present the first protein-level characterization of a group 4 allergen from storage mites. Due to its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.
PMCID: PMC3306266  PMID: 22292590
Aca s 4; Acarus siro; α-amylases; group 4 mite allergens; storage mites

Results 1-3 (3)