PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Hyaluronan synthase mediates dye translocation across liposomal membranes 
BMC Biochemistry  2012;13:2.
Background
Hyaluronan (HA) is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS), which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS) to liposomes preloaded with the fluorophore Cascade Blue (CB).
Results
CB translocation (efflux) was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL). An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL) and that, in contrast, tetramyristoyl cardiolipin (TM-CL) is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006). Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL.
Conclusions
The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.
doi:10.1186/1471-2091-13-2
PMCID: PMC3331846  PMID: 22276637
2.  Embedded Together: The Life and Death Consequences of Interaction of the Bcl-2 Family with Membranes 
Permeabilization of the outer mitochondrial membrane is the point of no return in most programmed cell deaths. This critical step is mainly regulated by the various protein-protein and protein-membrane interactions of the Bcl-2 family proteins. The two main models for regulation of mitochondrial outer membrane permeabilization, direct activation and displacement do not account for all of the experimental data and both largely neglect the importance of the membrane. We propose the embedding together model to emphasize the critical importance of Bcl-2 family protein interactions with and within membranes. The embedding together model proposes that both pro- and anti-apoptotic Bcl-2 family proteins engage in similar dynamic interactions that are governed by membrane dependent conformational changes and culminate in either aborted or productive membrane permeabilization depending on the final oligomeric state of pro-apoptotic Bax and/or Bak.
doi:10.1007/s10495-007-0746-4
PMCID: PMC2868339  PMID: 17453159
Bcl-2; Bax; MOMP; Mitochondrial permeabilization; Membrane proteins
3.  Oligomerization of membrane-bound Bcl-2 is involved in its pore formation induced by tBid 
Both proapoptotic Bax and antiapoptotic Bcl-2 are structurally homologous to the pore-forming domain of bacterial toxins. Bax proteins oligomerize in the mitochondrial outer membranes forming pores that release cytochrome c from the mitochondrial intermembrane space. Bcl-2 proteins also form pores that, however, are much smaller than the Bax pore. It is unknown whether Bcl-2 forms monomeric or oligomeric pores. Here, we characterized the Bcl-2 pore formation in liposomes using biophysical and biochemical techniques. The results show that the Bcl-2 pore enlarges as the concentration of Bcl-2 increases, suggesting that the pore is formed by Bcl-2 oligomers. As expected from oligomerization-mediated pore-formation, the small pores are formed earlier than the large ones. Bcl-2 oligomers form pores faster than the monomer, indicating that the oligomerization constitutes an intermediate step of the pore formation. A Bcl-2 mutant with higher affinity for oligomerization forms pores faster than wild type Bcl-2. Bcl-2 oligomers were detected in the liposomal membranes under conditions that Bcl-2 forms pores, and the extent of oligomerization was positively correlated with the pore-forming activity. Therefore, Bcl-2 oligomerizes in membranes forming pores, but the extent of oligomerization and the size of the resulting pores are much smaller than that of Bax, supporting the model that Bcl-2 is a defective Bax.
doi:10.1007/s10495-009-0389-8
PMCID: PMC2858642  PMID: 19701793
Bcl-2; tBid; pore; oligomerization; mitochondria; membrane
4.  The Cytosolic Domain of Bcl-2 Forms Small Pores on Model Mitochondrial Outer Membrane After Acidic pH-Induced Membrane Association 
The permeability of mitochondrial outer membrane (MOM) is regulated by proteins of the Bcl-2 family via their interactions at the membrane. While pro-apoptotic Bax protein promotes MOM permeabilization (MOMP) releasing cytochrome c after activation by BH3-only protein, anti-apoptotic Bcl-2 protein protects MOM. However both Bax and Bcl-2 can form pores in model membranes. Unlike Bax pore that has been extensively studied and directly linked to MOMP, much less is known about Bcl-2 pore. We thus investigated pore-forming property of recombinant Bcl-2 lacking the C-terminal transmembrane sequence (Bcl-2ΔTM) in liposomal membranes of MOM lipids. We found that: (1) Bcl-2 formed pores at acidic pH that induced association of Bcl-2 with liposome; (2) Bcl-2 pore size was dependent on Bcl-2 concentration, suggesting that oligomerization is involved in Bcl-2 pore formation; (3) Unlike Bax pore that can release large molecules up to 2 mega-Da, Bcl-2 pore was smaller releasing molecules of a few kilo-Da. Therefore, Bcl-2 and Bax may form different size pores in MOM, and while the large pore formed by Bax may release cytochrome c during apoptosis, the small pore formed by Bcl-2 may maintain the normal MOM permeability.
PMCID: PMC2844873  PMID: 19334571
Mitochondrial outer membrane (MOM); Permeability; Bcl-2; Bax
5.  The Cytosolic Domain of Bcl-2 Oligomerizes to Form Pores in Model Mitochondrial Outer Membrane at Acidic pH 
The three dimensional structures of both pro-apoptotic Bax and anti-apoptotic Bcl-2 are strikingly similar to that of pore-forming domains of diphtheria toxin and E. coli colicins. Consistent with the structural similarity, both Bax and Bcl-2 have been shown to possess pore-forming property in the membrane. However, these pore-forming proteins use different mechanisms to form pores. While Bax and diphtheria toxin form pores via oligomerization, the colicin pore is formed only by colicin monomers. Although oligomers of Bcl-2 proteins have been found in the mitochondria of both healthy and apoptotic cells, it is unknown whether or not oligomerization is involved in its pore formation. To determine the mechanism of Bcl-2 pore formation, we reconstituted the pore-forming process of Bcl-2 using purified proteins and liposomes. We found that Bcl-2 pore size depended on Bcl-2 concentration; and smaller entrapped molecules released faster than larger ones from liposomes at a given Bcl-2 concentration. Moreover, the rate of dye release mediated by pre-formed wild-type Bcl-2 oligomers or by the mutant Bcl-2 monomers with a higher homo-association affinity was much higher than that by wild-type Bcl-2 monomers. Together, it is suggested that oligomerization is likely involved in Bcl-2 pore formation.
PMCID: PMC2844872  PMID: 19634687
anti-apoptotic Bcl-2; pore formation; liposome; oligomerization
6.  The Bax BH3 Peptide H2–H3 Promotes Apoptosis by Inhibiting Bcl-2’s Pore-Forming and Anti-Bax Activities in the Membrane 
Pore-formation and protein-protein interactions are considered to play critical roles in the regulation of apoptosis by Bcl-2 family proteins. During the initiation of apoptosis, the anti-apoptotic Bcl-2 and the pro-apoptotic Bax form different pores to regulate the permeability of mitochondrial outer membrane, playing their opposite functions. Overexpression of Bcl-2 has been found in various cancer cells, therefore it is gaining widespread interest to discover small molecules to compromise Bcl-2 function for anti-cancer treatment. Since Bax binds to Bcl-2’s hydrophobic groove via its BH3 domain (composed of helices 2 and 3), by which their functions are inhibited each other, the H2–H3 peptide that contains the functional BH3 domain of Bax has been considered as a potential Bcl-2 antagonist. We recently reported that Bax peptide H2–H3 promotes cell death by inducing Bax-mediated cytochrome c release and by antagonizing Bcl-2’s inhibition on Bax. However, the mechanism of how H2–H3 inhibits the anti-apoptotic activity of Bcl-2 remains poorly understood. To address this question, we reconstituted the Bcl-2 or Bax pore-forming process in vitro. We found that H2–H3 inhibited Bcl-2’s pore formation and neutralized Bcl-2’s inhibition on Bax pore formation in the membrane, whereas the mutant H2–H3 peptide that does not induce apoptosis in cells was shown to have no effect on Bcl-2’s activities. Thus, inhibiting Bcl-2’s pore-forming and anti-Bax activities in the membrane is strongly correlated with H2–H3’s pro-apoptosis function in cells.
PMCID: PMC2844869  PMID: 19813621
Bcl-2; Bax; Bax peptide H2–H3; pore formation; oligomerization
7.  AUTO-ACTIVATION OF THE APOPTOSIS PROTEIN BAX INCREASES MITOCHONDRIAL MEMBRANE PERMEABILITY AND IS INHIBITED BY BCL-2* 
The Journal of biological chemistry  2006;281(21):14764-14775.
SUMMARY
Interactions among Bcl-2 family proteins mediated by Bcl-2 homology (BH) regions transform apoptosis signals into actions. The interactions between BH3 region-only proteins and multi-BH region proteins such as Bax and Bcl-2 have been proposed to be the dominant interactions required for initiating apoptosis. Experimental evidence also suggests that both homo- and hetero-interactions are mediated primarily by the BH3 regions in all Bcl-2 family proteins and contribute to commitment to or inhibition of apoptosis. We found that a peptide containing the BH3 helix of Bax was not sufficient to activate recombinant Bax to permeabilize mitochondria. However, an extended peptide containing the BH3 helix and additional downstream sequences activated Bax to permeabilize mitochondria and liposomes. Bcl-2 inhibited the membrane permeabilizing activity of peptide activated Bax. This activity of Bcl-2 was inhibited by the extended but not the BH3-only peptide despite both peptides binding to Bcl-2 with similar affinity. Further, membrane-bound Bax activation intermediates directly activated soluble Bax further permeabilizing the membrane. Bcl-2 inhibited Bax auto-activation. We therefore propose that Bax auto-activation amplifies the initial death signal produced by BH3-only proteins and that Bcl-2 functions as an inhibitor of Bax auto-activation.
doi:10.1074/jbc.M602374200
PMCID: PMC2826894  PMID: 16571718
8.  tBID ELICITS A CONFORMATIONAL ALTERATION IN MEMBRANE-BOUND BCL-2 SUCH THAT IT INHIBITS BAX PORE FORMATION* 
The Journal of biological chemistry  2006;281(47):35802-35811.
During initiation of apoptosis, Bcl-2 family proteins regulate the permeability of mitochondrial outer membrane. BH3-only protein, tBid, activates pro-apoptotic Bax to release cytochrome c from mitochondria. tBid also activates anti-apoptotic Bcl-2 in the mitochondrial outer membrane, changing it from a single-spanning to a multi-spanning conformation that binds the active Bax and inhibits cytochrome c release. However, it is not known whether other mitochondrial proteins are required to elicit the tBid-induced Bcl-2 conformational alteration. To define the minimal components that are required for the functionally important Bcl-2 conformational alteration, we reconstituted the reaction using purified proteins and liposomes. We found that purified tBid was sufficient to induce a conformational alteration in the liposome-tethered, but not cytosolic Bcl-2, resulting in a multi-spanning form that is similar to the one found in the mitochondrial outer membrane of drug treated cells. Mutations that abolished tBid/Bcl-2 interaction also abolished the conformational alteration, demonstrating that a direct tBid/Bcl-2 interaction at the membrane is both required and sufficient to elicit the conformational alteration. Furthermore, active Bax also elicited the Bcl-2 conformational alteration. Bcl-2 mutants that displayed increased or decreased activity in the conformational alteration assay, showed corresponding activities in inhibiting pore formation by Bax in vitro, and in preventing apoptosis in vivo. Thus, there is a strong correlation between the direct interaction of membrane-bound Bcl-2 and tBid with activation of Bcl-2 in vitro and in vivo.
doi:10.1074/jbc.M608303200
PMCID: PMC2825177  PMID: 17005564
9.  A Short Nur77-derived Peptide Converts Bcl-2 from a Protector to a Killer 
Cancer cell  2008;14(4):285-298.
SUMMARY
Bcl-2 can be converted into a pro-apoptotic molecule by nuclear receptor Nur77. However, the development of Bcl-2 converters as anti-cancer therapeutics has not been explored. Here we report the identification of a Nur77-derived Bcl-2 converting peptide with 9 amino acids (NuBCP-9) and its enantiomer, which induce apoptosis of cancer cells in vitro and in animals. The apoptotic effect of NuBCPs and their activation of Bax are not inhibited but rather potentiated by Bcl-2. NuBCP-9 enantiomers bind to the Bcl-2 loop, which shares the characteristics of structurally adaptable regions with many cancer-associated and signaling proteins. NuBCP-9s act as molecular switches to dislodge the Bcl-2 BH4 domain, exposing its BH3 domain, which in turn blocks the activity of anti-apoptotic Bcl-XL.
doi:10.1016/j.ccr.2008.09.002
PMCID: PMC2667967  PMID: 18835031
10.  sHA 14-1, a stable and ROS-free antagonist against anti-apoptotic Bcl-2 proteins, bypasses drug resistances and synergizes cancer therapies in human leukemia cell 
Cancer letters  2007;259(2):198-208.
HA 14-1, a small-molecule antagonist against anti-apoptotic Bcl-2 proteins, was demonstrated to induce selective cytotoxicity toward malignant cells and to overcome drug resistance. Due to its poor stability and the reactive oxygen species (ROS) generated by its decomposition, chemical modification of HA 14-1 is needed for its future development. We have synthesized a stabilized analog of HA 14-1 – sHA 14-1, which did not induce the formation of ROS. As expected for a putative antagonist against anti-apoptotic Bcl-2 proteins like HA 14-1, sHA 14-1 disrupted the binding interaction of a Bak BH3 peptide with Bcl-2 or Bcl-XL protein, inhibited the growth of tumor cells through the induction of apoptosis, and circumvented the drug resistance induced by the over-expression of anti-apoptotic Bcl-2 and Bcl-XL proteins. Interestingly, the impairment of extrinsic apoptotic pathway induced moderate resistance to sHA 14-1. The moderate resistance suggested that sHA 14-1 generated part of its apoptotic stress through the intrinsic pathway, possibly through its antagonism against anti-apoptotic Bcl-2 proteins. The resistance indicated that sHA 14-1 generated apoptotic stress through the extrinsic apoptotic pathway as well. The ability of sHA 14-1 to induce apoptotic stress through both pathways was further supported by the synergism of sHA 14-1 towards the cytotoxicities of Fas ligand and dexamethasone in Jurkat cells. Taken together, these findings suggest that sHA 14-1 may represent a promising candidate for the treatment of drug-resistant cancers either as a monotherapy or in combination with current cancer therapies.
doi:10.1016/j.canlet.2007.10.012
PMCID: PMC2693013  PMID: 18037229
sHA 14-1; stability; Bcl-2; apoptosis; drug resistance; synergism
11.  Membrane Topography and Topogenesis of Prenylated Rab Acceptor (PRA1)* 
The Journal of biological chemistry  2001;276(45):41733-41741.
The mouse prenylated Rab acceptor (mPRA1) is associated with the Golgi membrane at steady state and interacts with Rab proteins. It contains two internal hydrophobic domains (34 residues each) that have enough residues to form four transmembrane (TM) segments. In this study, we have determined the membrane topography of mPRA1 in both intact cells and isolated microsomes. The putative TM segments of mPRA1 were used to substitute for a known TM segment of a model membrane protein to determine whether the mPRA1 segments integrate into the membrane. Furthermore, N-linked glycosylation scanning methods were used to distinguish luminal domains from cytoplasmic domains of mPRA1. The data demonstrate that mPRA1 is a polytopic membrane protein containing four TM segments. These TM segments act cooperatively during the translocation and integration at the endoplasmic reticulum membrane. All hydrophilic domains are in the cytoplasm, including the N-terminal domain, the linker domain between the two hydrophobic domains, and the C-terminal domain. As a result, the bulk of mPRA1 is located in the cytoplasm, supporting its postulated role in regulating Rab membrane targeting and intracellular trafficking.
doi:10.1074/jbc.M103475200
PMCID: PMC1350924  PMID: 11535589
12.  Bcl-2 Homodimerization Involves Two Distinct Binding Surfaces, a Topographic Arrangement That Provides an Effective Mechanism for Bcl-2 to Capture Activated Bax* 
The Journal of biological chemistry  2004;279(42):43920-43928.
The homo- and heterodimerization of Bcl-2 family proteins is important for transduction and integration of apoptotic signals and control of the permeability of mitochondria and endoplasmic reticulum membranes. Here we mapped the interface of the Bcl-2 homodimer in a cell-free system using site-specific photocross-linking. Bcl-2 homodimer-specific photoadducts were detected from 11 of 17 sites studied. When modeled into the structure of Bcl-2 core, the interface is composed of two distinct surfaces: an acceptor surface that includes the hydrophobic groove made by helices 2 and 8 and the loop connecting helices 4 and 5 and a donor surface that is made by helices 1–4 and the loop connecting helices 2 and 3. The two binding surfaces are on separate faces of the three-dimensional structure, explaining the formation of Bcl-2 homodimers, homo-oligomers, and Bcl-2/Bax hetero-oligomers. We show that in vitro the Bcl-2 dimer can still interact with activated Bax as a larger oligomer. However, formation of a Bax/Bcl-2 heterodimer is favored, since this interaction inhibits Bcl-2 homodimerization. Our data support a simple model mechanism by which Bcl-2 interacts with activated Bax during apoptosis in an effective manner to neutralize the proapoptotic activity of Bax.
doi:10.1074/jbc.M406412200
PMCID: PMC1350923  PMID: 15302859

Results 1-12 (12)