Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Isolation and Functional Characterization of the Novel Clostridium botulinum Neurotoxin A8 Subtype 
PLoS ONE  2015;10(2):e0116381.
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
PMCID: PMC4320087  PMID: 25658638
2.  Clostridium botulinum Strains Producing BoNT/F4 or BoNT/F5 
Applied and Environmental Microbiology  2014;80(10):3250-3257.
Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.
PMCID: PMC4018930  PMID: 24632257
3.  Discovery of a Novel Enzymatic Cleavage Site for Botulinum Neurotoxin F5 
Febs Letters  2011;586(2):109-115.
Botulinum neurotoxins (BoNTs) cause botulism by cleaving proteins necessary for nerve transmission. There are seven serotypes of BoNT, A-G, characterized by their response to antisera. Many serotypes are further distinguished into differing subtypes based on amino acid sequence some of which result in functional differences. Our laboratory previously reported that all tested subtypes within each serotype have the same site of enzymatic activity. Recently, three new subtypes of BoNT/F; /F3, /F4, and /F5, were reported. Here, we report that BoNT/F5 cleaves substrate synaptobrevin-2 in a different location than the other BoNT/F subtypes, between 54L and 55E. This is the first report of cleavage of synaptobrevin-2 in this location.
PMCID: PMC3263758  PMID: 22172278
4.  Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes 
Biotechnology and bioengineering  2011;108(10):2456-2467.
A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 48 nM. Epitope binning showed that the three unique clones recognized at least two epitopes distinct from one another as well as from the detection MAbs. After production in E. coli, scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigens. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.
PMCID: PMC3203252  PMID: 21538339
Affinity reagents; molecular probes; scFv; antibodies; BoNT/A; yeast display
5.  Analysis of a unique Clostridium botulinum strain from the Southern hemisphere producing a novel type E botulinum neurotoxin subtype 
BMC Microbiology  2012;12:245.
Clostridium botulinum strains that produce botulinum neurotoxin type E (BoNT/E) are most commonly isolated from botulism cases, marine environments, and animals in regions of high latitude in the Northern hemisphere. A strain of C. botulinum type E (CDC66177) was isolated from soil in Chubut, Argentina. Previous studies showed that the amino acid sequences of BoNT/E produced by various strains differ by < 6% and that the type E neurotoxin gene cluster inserts into the rarA operon.
Genetic and mass spectral analysis demonstrated that the BoNT/E produced by CDC66177 is a novel toxin subtype (E9). Toxin gene sequencing indicated that BoNT/E9 differed by nearly 11% at the amino acid level compared to BoNT/E1. Mass spectrometric analysis of BoNT/E9 revealed that its endopeptidase substrate cleavage site was identical to other BoNT/E subtypes. Further analysis of this strain demonstrated that its 16S rRNA sequence clustered with other Group II C. botulinum (producing BoNT types B, E, and F) strains. Genomic DNA isolated from strain CDC66177 hybridized with fewer probes using a Group II C. botulinum subtyping microarray compared to other type E strains examined. Whole genome shotgun sequencing of strain CDC66177 revealed that while the toxin gene cluster inserted into the rarA operon similar to other type E strains, its overall genome content shared greater similarity with a Group II C. botulinum type B strain (17B).
These results expand our understanding of the global distribution of C. botulinum type E strains and suggest that the type E toxin gene cluster may be able to insert into C. botulinum strains with a more diverse genetic background than previously recognized.
PMCID: PMC3558463  PMID: 23113872
Botulism; Mass spectrometry; Genomics; Whole genome sequencing
6.  De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics 
Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A–G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence, and many subtypes are further differentiated into toxin variants. Previous work in our laboratory described the use of a proteomics approach to distinguish subtype BoNT/A1 from BoNT/A2 where BoNT identities were confirmed after searching data against a database containing protein sequences of all known BoNT/A subtypes. We now describe here a similar approach to differentiate subtypes BoNT/B1, /B2, /B3, /B4, and /B5. Additionally, to identify new subtypes or hitherto unpublished amino acid substitutions, we created an amino acid substitution database covering every possible amino acid change. We used this database to differentiate multiple toxin variants within subtypes of BoNT/B1 and B2. More importantly, with our amino acid substitution database, we were able to identify a novel BoNT/B subtype, designated here as BoNT/B7. These techniques allow for subtype and strain level identification of both known and unknown BoNT/B rapidly with no DNA required.
FigureIdentification of an existing or new BoNT/B can be accomplished through MS/MS analysis of digestion fragments of the protein.
PMCID: PMC3309144  PMID: 22395449
Botulinum neurotoxin; Botulism; Mass spectrometry; Proteomics
7.  Extraction and inhibition of enzymatic activity of botulinum neurotoxins /B1, /B2, /B3, /B4, and /B5 by a panel of monoclonal anti-BoNT/B antibodies 
BMC Biochemistry  2011;12:58.
Botulism is caused by botulinum neurotoxins (BoNTs), extremely toxic proteins which can induce respiratory failure leading to long-term intensive care or death. Treatment for botulism includes administration of antitoxins, which must be administered early in the course of the intoxication; therefore, rapid determination of human exposure to BoNT is an important public health goal. In previous work, our laboratory reported on Endopep-MS, a mass spectrometry-based activity method for detecting and differentiating BoNT/A, /B, /E, and /F in clinical samples. We also demonstrated that antibody-capture is effective for purification and concentration of BoNTs from complex matrices such as clinical samples. However, some antibodies inhibit or neutralize the enzymatic activity of BoNT, so the choice of antibody for toxin extraction is critical.
In this work, we evaluated 24 anti-BoNT/B monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/B1, /B2, /B3, /B4, and /B5 and to extract those toxins. Among the mAbs, there were significant differences in ability to extract BoNT/B subtypes and inhibitory effect on BoNT catalytic activity. Some of the mAbs tested enhanced the in vitro light chain activity of BoNT/B, suggesting that BoNT/B may undergo conformational change upon binding some mAbs.
In addition to determining in vitro inhibition abilities of a panel of mAbs against BoNT/B1-/B5, this work has determined B12.2 and 2B18.2 to be the best mAbs for sample preparation before Endopep-MS. These mAb characterizations also have the potential to assist with mechanistic studies of BoNT/B protection and treatment, which is important for studying alternative therapeutics for botulism.
PMCID: PMC3250939  PMID: 22085466
8.  Different Substrate Recognition Requirements for Cleavage of Synaptobrevin-2 by Clostridium baratii and Clostridium botulinum Type F Neurotoxins▿  
Botulinum neurotoxins (BoNTs) cause botulism, which can be fatal if it is untreated. BoNTs cleave proteins necessary for nerve transmission, resulting in paralysis. The in vivo protein target has been reported for all seven serotypes of BoNT, i.e., serotypes A to G. Knowledge of the cleavage sites has led to the development of several assays to detect BoNT based on its ability to cleave a peptide substrate derived from its in vivo protein target. Most serotypes of BoNT can be subdivided into subtypes, and previously, we demonstrated that three of the currently known subtypes of BoNT/F cleave a peptide substrate, a shortened version of synaptobrevin-2, between Q58 and K59. However, our research indicated that Clostridium baratii type F toxin did not cleave this peptide. In this study, we detail experiments demonstrating that Clostridium baratii type F toxin cleaves recombinant synaptobrevin-2 in the same location as that cleaved by proteolytic F toxin. In addition, we demonstrate that Clostridium baratii type F toxin can cleave a peptide substrate based on the sequence of synaptobrevin-2. This peptide substrate is an N-terminal extension of the original peptide substrate used for detection of other BoNT/F toxins and can be used to detect four of the currently known BoNT/F subtypes by mass spectrometry.
PMCID: PMC3067225  PMID: 21169446
9.  Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS 
PLoS ONE  2010;5(8):e12237.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies.
PMCID: PMC2923190  PMID: 20808925
10.  Extraction and Inhibition of Enzymatic Activity of Botulinum Neurotoxins/A1, /A2, and /A3 by a Panel of Monoclonal Anti-BoNT/A Antibodies 
PLoS ONE  2009;4(4):e5355.
Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing death or respiratory failure leading to long-term intensive care. Treatment includes serotype-specific antitoxins, which must be administered early in the course of the intoxication. Rapidly determining human exposure to BoNT is an important public health goal. In previous work, our laboratory focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating BoNT/A–G serotypes in buffer and BoNT/A, /B, /E, and /F in clinical samples. We have previously reported the effectiveness of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. Because some antibodies inhibit or neutralize the activity of BoNT, the choice of antibody with which to extract the toxin is critical. In this work, we evaluated a panel of 16 anti-BoNT/A monoclonal antibodies (mAbs) for their ability to inhibit the in vitro activity of BoNT/A1, /A2, and /A3 complex as well as the recombinant LC of A1. We also evaluated the same antibody panel for the ability to extract BoNT/A1, /A2, and /A3. Among the mAbs, there were significant differences in extraction efficiency, ability to extract BoNT/A subtypes, and inhibitory effect on BoNT catalytic activity. The mAbs binding the C-terminal portion of the BoNT/A heavy chain had optimal properties for use in the Endopep-MS assay.
PMCID: PMC2670495  PMID: 19399171
11.  Enzymatic Synthesis of Lipid A Molecules with Four Amide-linked Acyl Chains 
The Journal of biological chemistry  2004;279(24):25411-25419.
LpxA of Escherichia coli catalyzes the acylation of the glucosamine 3-OH group of UDP-GlcNAc, using R-3-hydroxymyristoyl-acyl carrier protein (ACP) as the donor substrate. We now demonstrate that LpxA in cell extracts of Mesorhizobium loti and Leptospira interrogans, which synthesize lipid A molecules containing 2,3-diamino-2,3-dideoxy-D-glucopyranose (GlcN3N) units in place of glucosamine, do not acylate UDP-GlcNAc. Instead, these LpxA acyltransferases require a UDP-GlcNAc derivative (designated UDP 2-acetamido-3-amino-2,3-dideoxy-α-D-glucopyranose or UDP-GlcNAc3N), characterized in the preceding paper (Sweet, C. R., Ribeiro, A. A., and Raetz, C. R. H. (2004) J. Biol. Chem. 279, 25400–25410), in which an amine replaces the glucosamine 3-OH group. L. interrogans LpxA furthermore displays absolute selectivity for 3-hydroxylauroyl-ACP as the donor, whereas M. loti LpxA functions almost equally well with 10-, 12-, and 14-carbon 3-hydroxyacyl-ACPs. The substrate selectivity of L. interrogans LpxA is consistent with the structure of L. interrogans lipid A. The mechanism of L. interrogans LpxA appears to be similar to that of E. coli LpxA, given that the essential His125 residue of E. coli LpxA is conserved and is also required for acyltransferase activity in L. interrogans. Acidithiobacillus ferrooxidans (an organism that makes lipid A molecules containing both GlcN and GlcN3N) has an ortholog of LpxA that is selective for UDP-GlcNAc3N, but the enzyme also catalyzes the acylation of UDP-GlcNAc at a slow rate. E. coli LpxA acylates UDP-GlcNAc and UDP-GlcNAc3N at comparable rates in vitro. However, UDP-GlcNAc3N is not synthesized in vivo, because E. coli lacks gnnA and gnnB. When the latter are supplied together with A. ferrooxidans lpxA, E. coli incorporates a significant amount of GlcN3N into its lipid A.
PMCID: PMC2597548  PMID: 15044493
12.  A Methylated Phosphate Group and Four Amide-linked Acyl Chains in Leptospira interrogans Lipid A. The Membrane Anchor of an Unusual Lipopolysaccharide that Activates TLR2* 
The Journal of biological chemistry  2004;279(24):25420-25429.
Leptospira interrogans differs from other spirochetes in that it contains homologs of all the Escherichia coli lpx genes required for the biosynthesis of the lipid A anchor of lipopolysaccharide (LPS). LPS from L. interrogans cells is unusual in that it activates TLR2 rather than TLR4. The structure of L. interrogans lipid A has now been determined by a combination of matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, and biochemical studies. Lipid A was released from LPS of L. interrogans serovar Pomona by 100 °C hydrolysis at pH 4.5 in the presence of SDS. Following purification by anion exchange and thin layer chromatography, the major component was shown to have a molecular weight of 1727. Mild hydrolysis with dilute NaOH reduced this to 1338, consistent with the presence of four N-linked and two O-linked acyl chains. The lipid A molecules of both the virulent and nonvirulent forms of L. interrogans serovar Icterohaemorrhagiae (strain Verdun) were identical to those of L. interrogans Pomona by the above criteria. Given the selectivity of L. interrogans LpxA for 3-hydroxylaurate, we propose that L. interrogans lipid A is acylated with R-3-hydroxylaurate at positions 3 and 3′ and with R-3-hydroxypalmitate at positions 2 and 2′. The hydroxyacyl chain composition was validated by gas chromatography and mass spectrometry of fatty acid methyl esters. Intact hexa-acylated lipid A of L. interrogans Pomona was also analyzed by NMR, confirming the presence a β-1′,6-linked disaccharide of 2,3-diamino-2,3-dideoxy-D-glucopyranose units. Two secondary unsaturated acyl chains are attached to the distal residue. The 1-position of the disaccharide is derivatized with an axial phosphate moiety, but the 4′-OH is unsubstituted. 1H and 31P NMR analyses revealed that the 1-phosphate group is methylated. Purified L. interrogans lipid A is inactive against human THP-1 cells but does stimulate tumor necrosis factor production by mouse RAW264.7 cells.
PMCID: PMC2556802  PMID: 15044492
13.  Expression Cloning and Biochemical Characterization of a Rhizobium leguminosarum Lipid A 1-Phosphatase* 
The Journal of biological chemistry  2003;278(41):39269-39279.
Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4′-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4′ positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.
PMCID: PMC2553562  PMID: 12869541
14.  Origin of the 2-Amino-2-deoxy-gluconate Unit in Rhizobium leguminosarum Lipid A 
The Journal of biological chemistry  2003;278(14):12120-12129.
An unusual feature of the lipid A from the plant endo-symbionts Rhizobium etli and Rhizobium leguminosarum is the presence of a proximal sugar unit consisting of a 2-amino-2-deoxy-gluconate moiety in place of glucosamine. An outer membrane oxidase that generates the 2-amino-2-deoxy-gluconate unit from a glucosamine-containing precursor is present in membranes of R. leguminosarum and R. etli but not in S. meliloti or Escherichia coli. We now report the identification of a hybrid cosmid that directs the overexpression of this activity by screening 1800 lysates of individual colonies of a R. leguminosarum 3841 genomic DNA library in the host strain R. etli CE3. Two cosmids (p1S11D and p1U12G) were identified in this manner and transferred into S. meliloti, in which they also directed the expression of oxidase activity in the absence of any chromosomal background. Subcloning and sequencing of the oxidase gene on a 6.5-kb fragment derived from the ~20-kb insert in p1S11D revealed that the enzyme is encoded by a gene (lpxQ) that specifies a protein of 224 amino acid residues with a putative signal sequence cleavage site at position 28. Heterologous expression of lpxQ using the T7lac promoter system in E. coli resulted in the production of catalytically active oxidase that was localized in the outer membrane. A new outer membrane protein of the size expected for LpxQ was present in this construct and was subjected to microsequencing to confirm its identity and the site of signal peptide cleavage. LpxQ expressed in E. coli generates the same products as seen in R. leguminosarum membranes. LpxQ is dependent on O2 for activity, as demonstrated by inhibition of the reaction under strictly anaerobic conditions. An ortholog of LpxQ is present in the genome of Agrobacterium tumefaciens, as shown by heterologous expression of oxidase activity in E. coli.
PMCID: PMC2548327  PMID: 12531908
15.  Relaxed Sugar Donor Selectivity of a Sinorhizobium meliloti Ortholog of the Rhizobium leguminosarum Mannosyl Transferase LpcC. Role of the Lipopolysaccharide Core in Symbiosis of Rhizobiaceae with Plants* 
The Journal of biological chemistry  2003;278(18):16365-16371.
The lpcC gene of Rhizobium leguminosarum and the lpsB gene of Sinorhizobium meliloti encode protein orthologs that are 58% identical over their entire lengths of about 350 amino acid residues. LpcC and LpsB are required for symbiosis with pea and Medicago plants, respectively. S. meliloti lpsB complements a mutant of R. leguminosarum defective in lpcC, but the converse does not occur. LpcC encodes a highly selective mannosyl transferase that utilizes GDP-mannose to glycosylate the inner 3-deoxy-D-manno-octulosonic acid (Kdo) residue of the lipopolysaccharide precursor Kdo2-lipid IVA. We now demonstrate that LpsB can also efficiently mannosylate the same acceptor substrate as does LpcC. Unexpectedly, however, the sugar nucleotide selectivity of LpsB is greatly relaxed compared with that of LpcC. Membranes of the wild-type S. meliloti strain 2011 catalyze the glycosylation of Kdo2-[4′-32P]lipid IVA at comparable rates using a diverse set of sugar nucleotides, including GDP-mannose, ADP-mannose, UDP-glucose, and ADP-glucose. This complex pattern of glycosylation is due entirely to LpsB, since membranes of the S. meliloti lpsB mutant 6963 do not glycosylate Kdo2-[4′-32P]lipid IVA in the presence of any of these sugar nucleotides. Expression of lpsB in E. coli using a T7lac promoter-driven construct results in the appearance of similar multiple glycosyl transferase activities seen in S. meliloti 2011 membranes. Constructs expressing lpcC display only mannosyl transferase activity. We conclude that LpsB, despite its high degree of similarity to LpcC, is a much more versatile glycosyltransferase, probably accounting for the inability of lpcC to complement S. meliloti lpsB mutants. Our findings have important implications for the regulation of core glycosylation in S. meliloti and other bacteria containing LpcC orthologs.
PMCID: PMC2552401  PMID: 12591936
16.  Botulinum Neurotoxin Detection and Differentiation by Mass Spectrometry 
Emerging Infectious Diseases  2005;11(10):1578-1583.
A new rapid, mass spectrometry-based method to detect and differentiate botulinal neurotoxins is described.
Botulinum neurotoxins (BoNTs) are proteases that cleave specific cellular proteins essential for neurotransmitter release. Seven BoNT serotypes (A–G) exist; 4 usually cause human botulism (A, B, E, and F). We developed a rapid, mass spectrometry–based method (Endopep-MS) to detect and differentiate active BoNTs A, B, E, and F. This method uses the highly specific protease activity of the toxins with target peptides specific for each toxin serotype. The product peptides derived from the endopeptidase activities of BoNTs are detected by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. In buffer, this method can detect toxin equivalents of as little as 0.01 mouse lethal dose (MLD)50 and concentrations as low as 0.62 MLD50/mL. A high-performance liquid chromatography–tandem mass spectrometry method for quantifying active toxin, where the amount of toxin can be correlated to the amount of product peptides, is also described.
PMCID: PMC3366733  PMID: 16318699
bioterrorism; botulism; mass spectrometry; botulinum neurotoxin; research
17.  Assembly Protein Precursor (pUL80.5 Homolog) of Simian Cytomegalovirus Is Phosphorylated at a Glycogen Synthase Kinase 3 Site and Its Downstream “Priming” Site: Phosphorylation Affects Interactions of Protein with Itself and with Major Capsid Protein 
Journal of Virology  2004;78(24):13501-13511.
Capsid assembly among the herpes-group viruses is coordinated by two related scaffolding proteins. In cytomegalovirus (CMV), the main scaffolding constituent is called the assembly protein precursor (pAP). Like its homologs in other herpesviruses, pAP is modified by proteolytic cleavage and phosphorylation. Cleavage is essential for capsid maturation and production of infectious virus, but the role of phosphorylation is undetermined. As a first step in evaluating the significance of this modification, we have identified the specific sites of phosphorylation in the simian CMV pAP. Two were established previously to be adjacent serines (Ser156 and Ser157) in a casein kinase II consensus sequence. The remaining two, identified here as Thr231 and Ser235, are within consensus sequences for glycogen synthase kinase 3 (GSK-3) and mitogen-activated protein kinase, respectively. Consistent with Thr231 being a GSK-3 substrate, its phosphorylation required a downstream “priming” phosphate (i.e., Ser235) and was reduced by a GSK-3-specific inhibitor. Phosphorylation of Ser235 converts pAP to an electrophoretically slower-mobility isoform, pAP*; subsequent phosphorylation of pAP* at Thr231 converts pAP* to a still-slower isoform, pAP**. The mobility shift to pAP* was mimicked by substituting an acidic amino acid for either Thr231 or Ser235, but the shift to pAP** required that both positions be phosphorylated. Glu did not substitute for pSer235 in promoting phosphorylation of Thr231. We suggest that phosphorylation of Thr231 and Ser235 causes charge-driven conformational changes in pAP, and we demonstrate that preventing these modifications alters interactions of pAP with itself and with major capsid protein, suggesting a functional significance.
PMCID: PMC533919  PMID: 15564461

Results 1-17 (17)