Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  pI-Control in Comparative Fluorescence Gel Electrophoresis (CoFGE) using amphoteric azo dyes 
Data in Brief  2015;3:221-228.
Amphoteric azo dyes were used for internal control of pI values in Comparative two-dimensional Fluorescence Gel Electrophoresis (CoFGE) [1]. The 2D-gel images of separated Escherichia coli proteins as well as those of colored amphoteric dyes separated by isoelectric focussing are presented. The latter were used to correct for variation in the first electrophoretic dimension and further improve protein coordinate assignment in 2D-gel electrophoresis. Data tables are supplied to demonstrate pI-value calibration and the effect on the assignment of protein spot coordinates.
PMCID: PMC4510154  PMID: 26217748
2D-PAGE; CoFGE; pI; Gel electrophoresis
2.  Depletion of Cutaneous Macrophages and Dendritic Cells Promotes Growth of Basal Cell Carcinoma in Mice 
PLoS ONE  2014;9(4):e93555.
Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.
PMCID: PMC3972151  PMID: 24691432
3.  Vitellogenin from the Silkworm, Bombyx mori: An Effective Anti-Bacterial Agent 
PLoS ONE  2013;8(9):e73005.
Silkworm, Bombyx mori, vitellogenin (Vg) was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host.
PMCID: PMC3772815  PMID: 24058454
4.  The Ephrin Receptor Tyrosine Kinase A2 is a Cellular Receptor for Kaposi’s Sarcoma-Associated Herpesvirus 
Nature medicine  2012;18(6):961-966.
Kaposi’s sarcoma associated herpesvirus (KSHV) is the human oncovirus which causes Kaposi’s sarcoma (KS), a highly vascularised tumour originating from lymphatic endothelial cells. Amongst others, the dimeric complex formed by the KSHV virion envelope glycoproteins H and L (gH/gL) is required for entry of herpesviruses into the host cell. We show that the Ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH/gL. EphA2 co-precipitated with both gH/gL and KSHV virions. KSHV infection rates were increased upon over-expression of EphA2. In contrast, antibodies against EphA2 and siRNAs directed against EphA2 inhibited KSHV infection of lymphatic endothelial cells. Pretreatment of KSHV virions with soluble EphA2 resulted in a dose-dependent inhibition of KSHV infection by up to 90%. Similarly, pretreating cells with the soluble EphA2 ligand EphrinA4 but not with EphA2 itself impaired KSHV infection. Notably, deletion of the EphA2 gene essentially abolished KSHV infection of murine vascular endothelial cells. Binding of gH/gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry. Quantitative RT-PCR and situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from KS or lymphatic endothelium and in KS specimens, respectively. Taken together, these results identify EphA2, a tyrosine kinase with known functions in neo-vascularisation and oncogenesis, as receptor for KSHV gH/gL and implicate an important role for EphA2 in KSHV infection especially of endothelial cells and in KS.
PMCID: PMC3645317  PMID: 22635007
5.  A proteomic view on the developmental transfer of homologous 30 kDa lipoproteins from peripheral fat body to perivisceral fat body via hemolymph in silkworm, Bombyx mori 
BMC Biochemistry  2012;13:5.
A group of abundant proteins of ~30 kDa is synthesized in silkworm larval peripheral fat body (PPFB) tissues and transported into the open circulatory system (hemolymph) in a time-depended fashion to be eventually stored as granules in the pupal perivisceral fat body (PVFB) tissues for adult development during the non-feeding stage. These proteins have been shown to act anti-apoptotic besides being assigned roles in embryogenesis and defense. However, detailed protein structural information for individual PPFB and PVFB tissues during larval and pupal developmental stages is still missing. Gel electrophoresis and chromatography were used to separate the 30 kDa proteins from both PPFB and PVFB as well as hemolymph total proteomes. Mass spectrometry (MS) was employed to elucidate individual protein sequences. Furthermore, 30 kDa proteins were purified and biochemically characterized.
One- and two-dimensional gel electrophoresis (1/2D-PAGE) was used to visualize the relative changes of abundance of the 30 kDa proteins in PPFB and PVFB as well as hemolymph from day 1 of V instar larval stage to day 6 of pupal stage. Their concentrations were markedly increased in hemolymph and PVFB up to the first two days of pupal development and these proteins were consumed during development of the adult insect. Typically, three protein bands were observed (~29, 30, 31 kDa) in 1D-PAGE, which were subjected to MS-based protein identification along with spots excised from 2D-gels run for those proteomes. Gas phase fragmentation was used to generate peptide sequence information, which was matched to the available nucleotide data pool of more than ten highly homologous insect 30 kDa lipoproteins. Phylogenetic and similarity analyses of those sequences were performed to assist in the assignment of experimentally identified peptides to known sequences. Lipoproteins LP1 to LP5 and L301/302 could be matched to peptides extracted from all bands suggesting the presence of full length and truncated or modified protein forms in all of them. The individual variants could not be easily separated by classical means of purification such as 2D-PAGE because of their high similarity. They even seemed to aggregate as was indicated by native gel electrophoresis. Multistep chromatographic procedures eventually allowed purification of an LP3-like protein. The protein responded to lipoprotein-specific staining.
In B. mori larvae and pupae, 30 kDa lipoproteins LP1 to LP5 and L301/302 were detected in PPFB and PVFB tissue as well as in hemolymph. The concentration of these proteins changed progressively during development from their synthesis in PPFB, transport in hemolymph to storage in PVFB. While the 30 kDa proteins could be reproducibly separated in three bands electrophoretically, the exact nature of the individual protein forms present in those bands remained partially ambiguous. The amino acid sequences of all known 30 kDa proteins showed very high homology. High-resolution separation techniques will be necessary before MS and other structural analysis can shed more light on the complexity of the 30 kDa subproteome in B. mori. A first attempt to that end allowed isolation of a B. mori LP3-like protein, the complete structure, properties and function of which will now be elucidated in detail.
PMCID: PMC3306753  PMID: 22369700
6.  MALDI-TOF High Mass Calibration up to 200 kDa Using Human Recombinant 16 kDa Protein Histidine Phosphatase Aggregates 
PLoS ONE  2011;6(8):e23612.
Protein histidine phosphatase (PHP) is an enzyme which removes phosphate groups from histidine residues. It was described for vertebrates in the year 2002. The recombinant human 16 kDa protein forms multimeric complexes in physiological buffer and in the gas phase. High-mass calibration in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has remained a problem due to the lack of suitable standards. Large proteins can hardly be freed of their substructural microheterogeneity by classical purification procedures so that their use as calibrants is limited. A small adduct-forming protein of validated quality is a valuable alternative for that purpose.
Methodology/Principal Findings
Three major PHP clusters of ∼113, 209 and >600 kDa were observed in gel filtration analysis. Re-chromatography of the monomer peak showed the same cluster distribution. The tendency to associate was detected also in MALDI-TOF MS measuring regular adducts up to 200 kDa.
PHP forms multimers consisting of up to more than 35 protein molecules. In MALDI-TOF MS it generates adduct ions every 16 kDa. The protein can be produced with high quality so that its use as calibration compound for high mass ranges above 100 kDa, where standards are difficult to obtain, is feasible.
PMCID: PMC3158095  PMID: 21876758
7.  Binding of ATP to vascular endothelial growth factor isoform VEGF-A165 is essential for inducing proliferation of human umbilical vein endothelial cells 
BMC Biochemistry  2011;12:28.
ATP binding is essential for the bioactivity of several growth factors including nerve growth factor, fibroblast growth factor-2 and brain-derived neurotrophic factor. Vascular endothelial growth factor isoform 165 (VEGF-A165) induces the proliferation of human umbilical vein endothelial cells, however a dependence on ATP-binding is currently unknown. The aim of the present study was to determine if ATP binding is essential for the bioactivity of VEGF-A165.
We found evidence that ATP binding toVEGF-A165 induced a conformational change in the secondary structure of the growth factor. This binding appears to be significant at the biological level, as we found evidence that nanomolar levels of ATP (4-8 nm) are required for the VEGF-A165-induced proliferation of human umbilical vein endothelial cells. At these levels, purinergic signaling by ATP via P2 receptors can be excluded. Addition of alkaline phosphate to cell culture lowered the ATP concentration in the cell culture medium to 1.8 nM and inhibited cell proliferation.
We propose that proliferation of endothelial cells is induced by a VEGF-A165-ATP complex, rather than VEGF-A165 alone.
PMCID: PMC3125245  PMID: 21619628
8.  Impact of Quenching Failure of Cy Dyes in Differential Gel Electrophoresis 
PLoS ONE  2011;6(3):e18098.
Differential gel electrophoresis (DIGE) is a technology widely used for protein expression analysis. It is based on labelling with fluorescent Cy dyes. In comparative fluorescence gel electrophoresis experiments, however, unspecific labelling using N-hydroxy-succinimide-ester-based labelling protocols was recently detected. Cross-talk was observed due to failure of the quenching process. Here, the impact of this effect for DIGE experiments was investigated.
Methodology/Principal Findings
Experiments to test quenching efficiency were performed in replicate using Escherichia coli lysate. Parameters such as the amount of dye and quencher were varied. Labelling and quenching were reversed in one experiment. Differences in protein spot volumes due to limited quenching were determined. For some spots twice the volume was detected underscoring the importance of proper control of silencing of active dye.
It could be demonstrated that uncontrolled labelling increased protein spot volume, even doubling it in some cases. Moreover, proteins responded differently to the protocol. Such unpredictable and unspecific processes are not acceptable in protein regulation studies so that it is necessary to validate the correct amount of quencher for individual samples before the DIGE experiment is performed. Increase of the concentration of lysine, which is used as quencher, from 10 mM to 2500 mM, was sufficient to silence the dye. Alternatively, active dye molecules can be removed by filtration.
PMCID: PMC3068157  PMID: 21479167
9.  Ralstonia eutropha H16 Flagellation Changes According to Nutrient Supply and State of Poly(3-Hydroxybutyrate) Accumulation▿  
Applied and Environmental Microbiology  2008;74(14):4477-4490.
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), in combination with matrix-assisted laser desorption ionization-time of flight analysis, and the recently revealed genome sequence of Ralstonia eutropha H16 were employed to detect and identify proteins that are differentially expressed during different phases of poly(3-hydroxybutyric acid) (PHB) metabolism. For this, a modified protein extraction protocol applicable to PHB-harboring cells was developed to enable 2D PAGE-based proteome analysis of such cells. Subsequently, samples from (i) the exponential growth phase, (ii) the stationary growth phase permissive for PHB biosynthesis, and (iii) a phase permissive for PHB mobilization were analyzed. Among several proteins exhibiting quantitative changes during the time course of a cultivation experiment, flagellin, which is the main protein of bacterial flagella, was identified. Initial investigations that report on changes of flagellation for R. eutropha were done, but 2D PAGE and electron microscopic examinations of cells revealed clear evidence that R. eutropha exhibited further significant changes in flagellation depending on the life cycle, nutritional supply, and, in particular, PHB metabolism. The results of our study suggest that R. eutropha is strongly flagellated in the exponential growth phase and loses a certain number of flagella in transition to the stationary phase. In the stationary phase under conditions permissive for PHB biosynthesis, flagellation of cells admittedly stagnated. However, under conditions permissive for intracellular PHB mobilization after a nitrogen source was added to cells that are carbon deprived but with full PHB accumulation, flagella are lost. This might be due to a degradation of flagella; at least, the cells stopped flagellin synthesis while normal degradation continued. In contrast, under nutrient limitation or the loss of phasins, cells retained their flagella.
PMCID: PMC2493158  PMID: 18502919
10.  Identification of poly(ADP-ribose)polymerase-1 and Ku70/Ku80 as transcriptional regulators of S100A9 gene expression 
S100 proteins, a multigenic family of non-ubiquitous cytoplasmic Ca2+-binding proteins, have been linked to human pathologies in recent years. Dysregulated expression of S100 proteins, including S100A9, has been reported in the epidermis as a response to stress and in association with neoplastic disorders. Recently, we characterized a regulatory element within the S100A9 promotor, referred to as MRE that drives the S100A9 gene expression in a cell type-specific, activation- and differentiation-dependent manner (Kerkhoff et al. (2002) J. Biol. Chem. 277, 41879–41887).
In the present study, we investigated transcription factors that bind to MRE. Using the MRE motif for a pull-down assay, poly(ADP-ribose)polymerase-1 (PARP-1) and the heterodimeric complex Ku70/Ku80 were identified by mass spectrometry and confirmed by chromatin immunoprecipitation. Furthermore, TPA-induced S100A9 gene expression in HaCaT keratinocytes was blocked after the pharmacologic inhibition of PARP-1 with 1,5-isoquinolinediol (DiQ).
The candidates, poly(ADP-ribose)polymerase-1 (PARP-1) and the heterodimeric complex Ku70/Ku80, are known to participate in inflammatory disorders as well as tumorgenesis. The latter may indicate a possible link between S100 and inflammation-associated cancer.
PMCID: PMC1766928  PMID: 17187679
11.  Ca2+-dependent Binding and Activation of Dormant Ezrin by Dimeric S100P 
Molecular Biology of the Cell  2003;14(6):2372-2384.
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.
PMCID: PMC194886  PMID: 12808036

Results 1-11 (11)