Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Dystroglycan is associated to the disulfide isomerase ERp57 
Experimental Cell Research  2012;318(19):2460-2469.
Dystroglycan (DG) is an extracellular receptor composed of two subunits, α-DG and β-DG, connected through the α-DG C-terminal domain and the β-DG N-terminal domain. We report an alanine scanning of all DG cysteine residues performed on DG-GFP constructs overexpressed in 293-Ebna cells, demonstrating that Cys-669 and Cys-713, both located within the β-DG N-terminal domain, are key residues for the DG precursor cleavage and trafficking, but not for the interaction between the two DG subunits. In addition, we have used immunprecipitation and confocal microscopy showing that ERp57, a member of the disulfide isomerase family involved in glycoprotein folding, is associated and colocalizes immunohistochemically with β-DG in the ER and at the plasma membrane of 293-Ebna cells. The β-DG–ERp57 complex also included α-DG. DG mutants, unable to undergo the precursor cleavage, were still associated to ERp57. β-DG and ERp57 were also co-immunoprecipitated in rat heart and kidney tissues. In vitro, a mutant ERp57, mimicking the reduced form of the wild-type protein, interacts directly with the recombinant N-terminal domain of both α-DG and β-DG with apparent dissociation constant values in the micromolar range. ERp57 is likely to be involved in the DG processing/maturation pathway, but its association to the mature DG complex might also suggest some further functional role that needs to be investigated.
► Cys-669 and Cys-713 are key residues for dystroglycan precursor cleavage. ► ERp57 is co-immunopurified with dystroglycan. ► ERp57 co-localizes with dystroglycan in the ER and at the plasma membrane. ► Recombinant ERp57 binds directly to dystroglycan recombinant domains.
PMCID: PMC3459099  PMID: 22814252
DG, dystroglycan; pre-DG, dystroglycan precursor; NEM, N-ethylmaleimide; DTT, dithiothreitol; sWGL, succinylated wheat germ lectin; Dystroglycan; ERp57; Immunoprecipitation; Fluorescence microscopy; Solid-phase binding assay
2.  Insertion of a myc-tag within α-dystroglycan domains improves its biochemical and microscopic detection 
BMC Biochemistry  2012;13:14.
Epitope tags and fluorescent fusion proteins have become indispensable molecular tools for studies in the fields of biochemistry and cell biology. The knowledge collected on the subdomain organization of the two subunits of the adhesion complex dystroglycan (DG) enabled us to insert the 10 amino acids myc-tag at different locations along the α-subunit, in order to better visualize and investigate the DG complex in eukaryotic cells.
We have generated two forms of DG polypeptides via the insertion of the myc-tag 1) within a flexible loop (between a.a. 170 and 171) that separates two autonomous subdomains, and 2) within the C-terminal domain in position 500. Their analysis showed that double-tagging (the β-subunit is linked to GFP) does not significantly interfere with the correct processing of the DG precursor (pre-DG) and confirmed that the α-DG N-terminal domain is processed in the cell before α-DG reaches its plasma membrane localization. In addition, myc insertion in position 500, right before the second Ig-like domain of α-DG, proved to be an efficient tool for the detection and pulling-down of glycosylated α-DG molecules targeted at the membrane.
Further characterization of these and other myc-permissive site(s) will represent a valid support for the study of the maturation process of pre-DG and could result in the creation of a new class of intrinsic doubly-fluorescent DG molecules that would allow the monitoring of the two DG subunits, or of pre-DG, in cells without the need of antibodies.
PMCID: PMC3432625  PMID: 22835149
3.  Tracking and quantitation of fluorescent HIV during cell-cell transmission 
Methods (San Diego, Calif.)  2010;53(1):20-26.
The green fluorescent protein (GFP) is a powerful genetic marking tool that has enabled virologists to monitor and track viral proteins during HIV infection. Expression-optimized Gag-GFP constructs have been used to study virus-like particle (VLP) assembly and localization in cell types that are easily transfected. The development of HIV-1 variants carrying GFP within the context of the viral genome has facilitated the study of infection and has been particularly useful in monitoring the transfer of virus between cells following virological synapse formation. HIV Gag-iGFP, a viral clone that contains GFP inserted between the matrix (MA) and capsid (CA) domains of Gag, is the first replication competent molecular clone that generates fluorescent infectious particles. Here, we discuss some methods that exploit HIV Gag-iGFP to quantify cell-to-cell transmission of virus by flow cytometry and to track the proteins during assembly and transmission using live cell imaging.
PMCID: PMC3025074  PMID: 20627127
4.  The P-Loop Domain of Yeast Clp1 Mediates Interactions Between CF IA and CPF Factors in Pre-mRNA 3′ End Formation 
PLoS ONE  2011;6(12):e29139.
Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3′ end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 homologues, but not the yeast protein, carry 5′ RNA kinase activity. We show that depletion of Clp1 in yeast promoted defective 3′ end formation and RNA polymerase II termination; however, cells expressing Clp1 with mutant P-loops displayed only minor defects in gene expression. Similarly, purified and reconstituted mutant CF IA factors that interfered with ATP binding complemented CF IA depleted extracts in coupled in vitro transcription/3′ end processing reactions. We found that Clp1 was required to assemble recombinant CF IA and that certain P-loop mutants failed to interact with the CF IA subunit Pcf11. In contrast, mutations in Clp1 enhanced binding to the 3′ endonuclease Ysh1 that is a component of CPF. Our results support a structural role for the Clp1 P-loop motif. ATP binding by Clp1 likely contributes to CF IA formation and cross-factor interactions during the dynamic process of 3′ end formation.
PMCID: PMC3245249  PMID: 22216186
5.  Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1 
Journal of biophotonics  2010;3(4):216-223.
Cell-cell interactions through direct contact are very important for cellular communication and coordination – especially for immune cells. The human immunodeficiency virus type I (HIV-1) induces immune cell interactions between CD4+ cells to shuttle between T cells via a virological synapse. A goal to understand the process of cell-cell transmission through virological synapses is to determine the cellular states that allow a chance encounter between cells to become a stable cell-cell adhesion. Here we demonstrate the use of optical tweezers to manipulate uninfected primary CD4+ T cells near HIV Gag-iGFP transfected Jurkat T cells to probe the determinants that induce stable adhesion. When combined with fast 4D confocal fluorescence microscopy, optical tweezers can be utilized to not only facilitate cell-cell contact, but to also allow one to simultaneously track the formation of a virological synapse, and ultimately to enable us to precisely determine all events preceding virus transfer.
HIV-1 infected T cell (green) decorated with uninfected primary T cells (red) by manipulating the primary cells with an optical tweezers system
PMCID: PMC3085885  PMID: 20301121
Optical tweezers; micromanipulation; HIV-1; cell-cell transmission; fluorescence microscopy
6.  Quantitative 3D Video Microscopy of HIV Transfer Across T Cell Virological Synapses 
Science (New York, N.Y.)  2009;323(5922):1743-1747.
The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized “buttons” containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.
PMCID: PMC2756521  PMID: 19325119
7.  Sequence of Human Immunodeficiency Virus Type 1 (HIV-1) Gag Localization and Oligomerization Monitored with Live Confocal Imaging of a Replication-Competent, Fluorescently Tagged HIV-1▿ †  
Journal of Virology  2007;81(22):12596-12607.
The assembly of infectious human immunodeficiency virus (HIV) requires that Gag transport and oligomerization be coordinated with its association with other viral proteins, viral RNAs, and cellular membranes. We have developed a replication-competent HIV type 1 molecular clone that carries a Gag-internal or interdomain green fluorescent protein (iGFP) fusion to reveal a physiologically accurate temporal sequence of Gag localization and oligomerization during the formation of infectious HIV. This recombinant HIV is as infectious as native HIV in single-round infectivity assays, validating its use for trafficking studies. It replicates robustly in permissive MT4 cells and is infectious, yet it spreads poorly in other T-cell lines. Immunofluorescence of Gag-iGFP showed a pattern very similar to that of native Gag. However, the intense plasma membrane Gag-iGFP fluorescence contrasts markedly with its immunofluorescence at this site, indicating that many Gag epitopes can be masked by oligomerization. Consistent with this, fluorescence resonance energy transfer studies visualized intense Gag oligomerization at the plasma membrane and weaker oligomerization at cytoplasmic sites. Four-dimensional, time-lapse confocal imaging reveals a temporal progression of Gag distribution over hours in which Gag is initially diffusely localized within the cytoplasm. Plasma membrane signals then accumulate as Gag levels increase and vesicular association appears late, only after plasma membrane site signals have reached high intensity. Lastly, the cell rounds up and HIV protease activation induces diffuse fluorescence throughout the cell. These distinct phases reveal a natural progression of Gag trafficking during the viral gene expression program. HIV Gag-iGFP is a useful tool for dissecting mechanisms of viral assembly and transmission.
PMCID: PMC2168995  PMID: 17728233
8.  Predominant Mode of Human Immunodeficiency Virus Transfer between T Cells Is Mediated by Sustained Env-Dependent Neutralization-Resistant Virological Synapses▿ †  
Journal of Virology  2007;81(22):12582-12595.
Cell-free human immunodeficiency virus type 1 (HIV-1) can initiate infections, but contact between infected and uninfected T cells can enhance viral spread through intercellular structures called virological synapses (VS). The relative contribution of VS to cell-free viral transfer has not been carefully measured. Using an ultrasensitive, fluorescent virus transfer assay, we estimate that when VS between HIV-expressing Jurkat T cells and primary CD4+ T cells are formed, cell-associated transfer of virus is 18,000-fold more efficient than uptake of cell-free virus. Furthermore, in contrast to cell-free virus uptake, the VS deposits virus rapidly into focal, trypsin-resistant compartments in target T cells. This massive virus internalization requires Env-CD4 receptor interactions but is resistant to inhibition by patient-derived neutralizing antisera that inhibit homologous cell-free virus. Deleting the Env cytoplasmic tail does not abrogate VS-mediated transfer, but it renders the VS sensitive to neutralizing antibodies, suggesting that the tail limits exposure of VS-neutralizing epitopes on the surface of infected cells. Dynamic live imaging of the VS reveals that HIV-expressing cells are polarized and make sustained, Env-dependent contacts with target cells through uropod-like structures. The polarized T-cell morphology, Env-CD4 coordinated adhesion, and viral transfer from HIV-infected to uninfected cells suggest that VS allows HIV-1 to evade antibody neutralization and to disseminate efficiently. Future studies will discern to what extent this massive viral transfer contributes to productive infection or viral dissemination through the migration of virus-carrying T cells.
PMCID: PMC2169007  PMID: 17728240
9.  The Yeast Nucleoporin Nup53p Specifically Interacts with Nic96p and Is Directly Involved in Nuclear Protein Import 
Molecular Biology of the Cell  2000;11(11):3885-3896.
The bidirectional nucleocytoplasmic transport of macromolecules is mediated by the nuclear pore complex (NPC) which, in yeast, is composed of ∼30 different proteins (nucleoporins). Pre-embedding immunogold-electron microscopy revealed that Nic96p, an essential yeast nucleoporin, is located about the cytoplasmic and the nuclear periphery of the central channel, and near or at the distal ring of the yeast NPC. Genetic approaches further implicated Nic96p in nuclear protein import. To more specifically explore the potential role of Nic96p in nuclear protein import, we performed a two-hybrid screen with NIC96 as the bait against a yeast genomic library to identify transport factors and/or nucleoporins involved in nuclear protein import interacting with Nic96p. By doing so, we identified the yeast nucleoporin Nup53p, which also exhibits multiple locations within the yeast NPC and colocalizes with Nic96p in all its locations. Whereas Nup53p is directly involved in NLS-mediated protein import by its interaction with the yeast nuclear import receptor Kap95p, it appears not to participate in NES-dependent nuclear export.
PMCID: PMC15044  PMID: 11071914

Results 1-9 (9)