PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata 
The Biochemical journal  2010;429(1):103-112.
Synopsis
The saliva of blood-feeding parasites is a rich source of peptidase inhibitors that help overcome the host’s defense during host-parasite interactions. Using proteomic analysis, the cystatin OmC2 was demonstrated in the saliva of the soft tick Ornithodoros moubata, an important disease-vector transmitting African swine fever virus and the spirochaete Borrelia duttoni. A structural, biochemical and biological characterization of this peptidase inhibitor was undertaken. Recombinant OmC2 was screened against a panel of physiologically relevant peptidases and found to be an effective broad-specificity inhibitor of cysteine cathepsins, including endopeptidases (cathepsins L and S) and exopeptidases (cathepsins B, C and H). The crystal structure of OmC2 was determined at a resolution of 2.45 Å and used to describe the structure-inhibitory activity relationship. The biological impact of OmC2 was demonstrated both in vitro and in vivo. OmC2 affected the function of antigen-presenting mouse dendritic cells by reducing the production of the proinflammatory cytokines TNF-α and IL-12, and proliferation of antigen-specific CD4+ T cells. This suggests that OmC2 may suppress the host’s adaptive immune response. Immunization of mice with OmC2 significantly suppressed the survival of O. moubata in infestation experiments. We conclude that OmC2 is a promising target for the development of a novel anti-tick vaccine to control O. moubata populations and combat the spread of associated diseases.
doi:10.1042/BJ20100280
PMCID: PMC3523712  PMID: 20545626
cathepsin; cystatin; immune cells; structure-activity relationship; parasite; peptidase inhibitor
2.  Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus  
Cleavage of the serpin IRS-2 from the hard tick I. ricinus by contaminating proteolytic activity mimicked the specific processing of the serpin by its target protease and resulted in a more stable form of the serpin which produced crystals that diffracted to 1.8 Å resolution.
IRS-2 from the hard tick Ixodes ricinus belongs to the serpin family of protease inhibitors. It is produced in the salivary glands of the tick and its anti-inflammatory activity suggests that it plays a role in parasite–host interaction. Recombinant IRS-2 prepared by heterologous expression in a bacterial system was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the primitive tetragonal space group P43 and diffracted to 1.8 Å resolution. Mass-spectrometric and electrophoretic analyses revealed that IRS-2 was cleaved by contaminating proteases during crystallization. This processing of IRS-2 mimicked the specific cleavage of the serpin by its target protease and resulted in a more stable form (the so-called relaxed conformation), which produced well diffracting crystals. Activity profiling with specific substrates and inhibitors demonstrated traces of serine and cysteine proteases in the protein stock solution.
doi:10.1107/S1744309110032343
PMCID: PMC3001646  PMID: 21045293
serpins; ticks; proteolysis
3.  Enzymatic activity and immunoreactivity of Aca s 4, an alpha-amylase allergen from the storage mite Acarus siro 
BMC Biochemistry  2012;13:3.
Background
Enzymatic allergens of storage mites that contaminate stored food products are poorly characterized. We describe biochemical and immunological properties of the native alpha-amylase allergen Aca s 4 from Acarus siro, a medically important storage mite.
Results
A. siro produced a high level of alpha-amylase activity attributed to Aca s 4. This enzyme was purified and identified by protein sequencing and LC-MS/MS analysis. Aca s 4 showed a distinct inhibition pattern and an unusual alpha-amylolytic activity with low sensitivity to activation by chloride ions. Homology modeling of Aca s 4 revealed a structural change in the chloride-binding site that may account for this activation pattern. Aca s 4 was recognized by IgE from house dust mite-sensitive patients, and potential epitopes for cross-reactivity with house dust mite group 4 allergens were found.
Conclusions
We present the first protein-level characterization of a group 4 allergen from storage mites. Due to its high production and IgE reactivity, Aca s 4 is potentially relevant to allergic hypersensitivity.
doi:10.1186/1471-2091-13-3
PMCID: PMC3306266  PMID: 22292590
Aca s 4; Acarus siro; α-amylases; group 4 mite allergens; storage mites
4.  Hemoglobin digestion in Blood-Feeding Ticks: Mapping a Multi-Peptidase Pathway by Functional Proteomics 
Chemistry & biology  2009;16(10):1053-1063.
SUMMARY
Hemoglobin digestion is an essential process for blood-feeding parasites. Using chemical tools, we deconvoluted the intracellular hemoglobinolytic cascade in the tick Ixodes ricinus, a vector of Lyme disease and tick-borne encephalitis. In tick gut tissue, a network of peptidases was demonstrated through imaging with specific activity-based probes and activity profiling with peptidic substrates/inhibitors. This peptidase network is induced upon blood feeding and degrades hemoglobin at acidic pH. Selective inhibitors were applied to dissect the roles of the individual peptidases and determine the peptidase-specific cleavage map of the hemoglobin molecule. The degradation pathway is initiated by endopeptidases of aspartic and cysteine class (cathepsin D supported by cathepsin L and legumain) and continued by cysteine amino- and carboxy-dipeptidases (cathepsins C and B). The identified enzymes are potential targets to developing novel anti-tick vaccines.
doi:10.1016/j.chembiol.2009.09.009
PMCID: PMC2801564  PMID: 19875079
5.  Structure—Activity Study of New Inhibitors of Human Betaine-Homocysteine S-Methyltransferase 
Journal of medicinal chemistry  2009;52(12):3652-3665.
Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to l-homocysteine, yielding dimethylglycine and l-methionine. In this study, we prepared a new series of BHMT inhibitors. The inhibitors were designed to mimic the hypothetical transition state of BHMT substrates and consisted of analogues with NH, N(CH3), or N(CH3)2 groups separated from the homocysteine sulfur atom by a methylene, ethylene, or a propylene spacer. Only the inhibitor with the N(CH3) moiety and ethylene spacer gave moderate inhibition. This result led us to prepare two inhibitors lacking a nitrogen atom in the S-linked alkyl chain: (RS,RS)-5-(3-amino-3-carboxypropylthio)-3-methylpentanoic acid and (RS)-5-(3-amino-3-carboxypropylthio)-3,3-dimethylpentanoic acid. Both of these compounds were highly potent inhibitors of BHMT. The finding that BHMT does not tolerate a true betaine mimic within these inhibitors, especially the nitrogen atom, is surprising and evokes questions about putative conformational changes of BHMT upon the binding of the substrates/products and inhibitors.
doi:10.1021/jm8015798
PMCID: PMC2744866  PMID: 19534555
6.  Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues 
BMC Cancer  2008;8:107.
Background
Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences.
Methods
We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE) gels in pH range 4–7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package) and data-mining analysis (GUHA). For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed.
Results
Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased.
Conclusion
We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups.
doi:10.1186/1471-2407-8-107
PMCID: PMC2377273  PMID: 18416831

Results 1-6 (6)