PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (132)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  A Novel Support Vector Machine with Globality-Locality Preserving 
The Scientific World Journal  2014;2014:872697.
Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM.
doi:10.1155/2014/872697
PMCID: PMC4086371  PMID: 25045750
2.  Vitamin D Deficiency Causes Defective Resistance to Aspergillus fumigatus in Mice via Aggravated and Sustained Inflammation 
PLoS ONE  2014;9(6):e99805.
Background
Vitamin D plays an important role in pulmonary resistance and immunity, and its deficiency has been linked to various respiratory infections. Little is known about the effect of vitamin D deficiency on host pulmonary defense to Aspergillus fumigatus (A. fumigatus).
Methods
Mice raised on vitamin D sufficient or deficient diets were infected intratracheally with A. fumigatus conidia. Mortality, fungal growth, weight loss and lung histology were monitored. Alveolar macrophages (AMs) were stimulated with A. fumigatus conidia in vitro. The kinetics of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), chemokines (CXCL1, CCL3), and pattern recognition receptors (Toll-like receptor [TLR] 2, TLR 4 and dectin-1) expression in the lungs and AMs were measured.
Results
Upon A. fumigatus infection, vitamin D deficient mice showed higher mortality, greater fungal load, and more weight loss than its sufficient counterparts. Vitamin D deficient mice demonstrated aggravated and prolonged histological evidence of lung inflammation as well as enhanced BAL cell counts, dominated by neutrophils after A. fumigatus inoculation. Increased basal levels of pro-inflammatory cytokines in the lungs and AMs from naïve vitamin D deficient mice were observed. Upon A. fumigatus exposure, vitamin D deficiency led to enhanced and sustained expression of TNF-α, IL-1β, IL-6, CXCL1 and CCL3 both in vivo and in vitro. Up-regulation of TLR2, TLR4 and dectin-1was observed in the lungs and AMs from vitamin D deficient mice both at baseline and after A. fumigatus exposure.
Conclusions
Vitamin D deficiency causes defective pulmonary resistance to A. fumigatus in mice, possibly by the enhanced basal expression of pattern recognition receptors and pro-inflammatory cytokines, which induced excessive inflammatory response in response to A. fumigatus challenge.
doi:10.1371/journal.pone.0099805
PMCID: PMC4057384  PMID: 24926881
3.  A replacement name for Dayus Gerken, 2001 (Crustacea, Peracarida, Cumacea), preoccupied by Dayus Mahmood, 1967 (Insecta, Hemiptera, Cicadellidae) 
ZooKeys  2014;137-138.
A replacement name is proposed for genus Dayus Gerken, 2001 (Crustacea: Peracarida: Cumacea), preoccupied by Dayus Mahmood, 1967 (Insecta: Hemiptera: Cicadellidae). The following changes are proposed: Jennidayus new replacement name = Dayus Gerken, 2001 (nec Mahmood 1967); Jennidayus pharocheradus (Gerken, 2001), comb. n. = Dayus pharocheradus Gerken, 2001; Jennidayus acanthus (Gerken, 2001), comb. n. = Dayus acanthus Gerken, 2001; Jennidayus makrokolosus (Gerken, 2001), comb. n. = Dayus makrokolosus Gerken, 2001.
doi:10.3897/zookeys.414.7673
PMCID: PMC4086053  PMID: 25009419
Crustacea; Peracarida; Cumacea; homonym; replacement name
4.  Resin Composites Reinforced by Nanoscaled Fibers or Tubes for Dental Regeneration 
BioMed Research International  2014;2014:542958.
It has been stated clearly that nanofillers could make an enhancement on the mechanical performances of dental composites. In order to address current shortage of traditional dental composites, fillers in forms of nanofibers or nanotubes are broadly regarded as ideal candidates to greatly increase mechanical performances of dental composites with low content of fillers. In this review, the efforts using nanofibers and nanotubes to reinforce mechanical performances of dental composites, including polymeric nanofibers, metallic nanofibers or nanotubes, and inorganic nanofibers or nanotubes, as well as their researches related, are demonstrated in sequence. The first purpose of current paper was to confirm the enhancement of nanofibers or nanotubes' reinforcement on the mechanical performances of dental restorative composite. The second purpose was to make a general description about the reinforcement mechanism of nanofibers and nanotubes, especially, the impact of formation of interphase boundary interaction and nanofibers themselves on the advanced mechanical behaviors of the dental composites. By means of the formation of interface interaction and poststretching nanofibers, reinforced effect of dental composites by sorts of nanofibers/nanotubes has been successfully obtained.
doi:10.1155/2014/542958
PMCID: PMC4058202  PMID: 24982894
5.  Efficacy of ilaprazole in the treatment of duodenal ulcers: A meta-analysis 
AIM: To compare the efficacy and tolerance of ilaprazole compared with other proton pump inhibitors (PPIs) in the treatment of duodenal ulcer.
METHODS: An electronic database search of Medline, Embase, the Cochrane controlled trials register, Web of Science, PubMed, and the Chinese Biomedical Literature Database (updated to July 2013), and manual searches were conducted. A meta-analysis of randomized controlled trials comparing the efficacy and tolerance of ilaprazole and other PPIs in the treatment of duodenal ulcers was performed.
RESULTS: Five articles involving 1481 patients were included. The meta-analysis showed no difference in the 4-wk healing rate between ilaprazole and other PPIs [89.7% vs 87.0%; relative risk (RR) = 1.02; 95%CI: 0.98-1.06; Z = 1.00; P = 0.32]. The results did not change in the sensitivity analyses. The meta-analysis indicated that the adverse effect rate in the ilaprazole group was lower than that in the control group, but the difference was not significant (9.7% vs 13.0%; RR = 0.81; 95%CI: 0.60-1.07; Z = 1.47; P = 0.14).
CONCLUSION: Ilaprazole is a highly effective and safe PPI in the treatment of duodenal ulcers. Ilaprazole can be recommended as a therapy for acid-related disorders, especially in Asian populations.
doi:10.3748/wjg.v20.i17.5119
PMCID: PMC4009550  PMID: 24803828
Ilaprazole; Proton pump inhibitor; Duodenal ulcer; Meta-analysis
6.  The Immunosuppressant Protosappanin A Diminished Recipient T Cell Migration into Allograft via Inhibition of IP-10 in Rat Heart Transplant 
PLoS ONE  2014;9(5):e96138.
The immunosuppressant Protosappanin A (PrA), isolated from the medicinal herb, promotes cardiac allograft survival, diminishes inflammatory cell infiltration, and inhibits interferon γ-induced protein 10 kDa (IP-10) mRNA expression in rats cardiac grafts. Binding of the chemokine IP-10 to its cognate receptor, CXCR3, plays crucial roles in allograft immunity, especially by mediating the recruitment of effector T cells to allografted tissues. In this study, we attempted to determine whether PrA-mediated inhibition of IP-10 contributes to the effect of reduced T cell infiltration into cardiac allograft within a rat model. Administration of PrA (25 mg/kg daily) via oral gavage following heart transplantation significantly reduced the increase of IP-10 mRNA level in allograft and prevented IP-10 secretion by peripheral blood mononuclear cells (PBMC) isolated from recipient rats seven days posttransplantation. Furthermore, in vitro experiments demonstrated that PrA addition to control PBMC prevented IP-10 secretion. Chemotactic migration assays were utilized to evaluate recipient T cell migration towards PBMC supernatant. PrA administration impaired PBMC supernatant-induced T cell migration. Additional in vitro experiments revealed that PrA slightly reduced naïve T cell migration towards chemokines. The presence of IP-10 in PBMC supernatant prevented PrA from reducing T cell migration in PrA-treated recipients. Neither CXCR3 chemokine ligand Mig nor non-CXCR3 chemokine ligand SDF-1 had any effect on T cell migration in PrA-treated recipients. The addition of anti-CXCR3 antibody restored PrA-mediated inhibition of T cell migration. Immunofluorescence microscopy showed that IP-10 was expressed mainly in CD68 positive infiltrating monocytes. Furthermore, PrA consistently reduced CXCR3+T cell infiltration into cardiac allografts. The reduced intensity of CXCR3 staining in PrA-treated allografts contributed to the previously depressed naïve T cell migrating activity induced by PrA. Collectively, these data indicate that PrA inhibition of IP-10 activity reduced recipient T cell migration and infiltration of cardiac allografts, thus partially explaining the immunosuppressive effect of PrA.
doi:10.1371/journal.pone.0096138
PMCID: PMC4010525  PMID: 24798458
7.  Targeted Delivery of microRNA-29b by Transferrin Conjugated Anionic Lipopolyplex Nanoparticles: A Novel Therapeutic Strategy in Acute Myeloid Leukemia 
Purpose
miR-29b directly or indirectly targets genes involved in acute myeloid leukemia (AML) i.e., DNMTs, CDK6, SP1, KIT and FLT3. Higher miR-29b pretreatment expression is associated with improved response to decitabine and better outcome in AML. Thus designing a strategy to increase miR-29b levels in AML blasts may be of therapeutic value. However, free synthetic miRs are easily degraded in bio-fluids and have limited cellular uptake. To overcome these limitations, we developed a novel transferrin-conjugated nanoparticle delivery system for synthetic miR-29b (Tf-NP-miR-29b).
Experiment Design
Delivery efficiency was investigated by flow-cytometry, confocal microscopy and quantitative-PCR. The expression of miR-29b targets was measured by immunoblotting. The anti-leukemic activity of Tf-NP-miR-29b was evaluated by measuring cell proliferation and colony formation ability and in a leukemia mouse model.
Results
Tf-NP-miR-29b treatment resulted in >200-fold increase of mature miR-29b compared to free miR-29b and was about twice as efficient as treatment with non-Tf-conjugated NP-miR-29b. Tf-NP-miR-29b treatment significantly downregulated DNMTs, CDK6, SP1, KIT and FLT3 and decreased AML cell growth by 30–50% and impaired colony formation by approximately 50%. Mice engrafted with AML cells and then treated with Tf-NP-miR-29b had significantly longer survival compared to Tf-NP-scramble (P=0.015) or free miR-29b (P=0.003). Furthermore, priming AML cell with Tf-NP-miR-29b before decitabine resulted in strong cell viability decrease in vitro and showed improved anti-leukemic activity compared with decitabine alone (P=0.001) in vivo.
Conclusion
Tf-NP effectively delivered functional miR-29b, resulting in target downregulation and anti-leukemic activity, and warrants further investigation as a novel therapeutic approach in AML.
doi:10.1158/1078-0432.CCR-12-3191
PMCID: PMC3644023  PMID: 23493348
lipopolyplex nanoparticles; miR-29b; Acute Myeloid Leukemia
8.  Comparative cellular pharmacokinetics and pharmacodynamics of siRNA delivery by SPANosomes and by cationic liposomes 
Mechanistic understanding of intracellular trafficking is important for the development of small interfering RNA (siRNA) delivery vehicles. Here, we describe a novel methodology to quantitatively analyze nanocarrier-mediated disposition of siRNA. Cellular uptake and cytoplasmic release of siRNA over time were quantified by measuring the fluorescence intensities of fluorescently-labeled siRNAs and molecular beacons using flow cytometry. This method was used to investigate the cellular pharmacokinetics (PK) of siRNA delivery by SPANosomes (SP) and by cationic liposomes (CL). The results showed that the superior pharmacodynamic (PD) response of SP was because it enhanced transport of siRNA into the cytoplasm compared to the CL. The divergent cellular pharmacokinetic profiles of the two formulations were associated with different cellular entry pathways. These findings can facilitate the rational design of more efficient siRNA delivery vehicles in the future.
doi:10.1016/j.nano.2012.10.002
PMCID: PMC3633702  PMID: 23117046
RNA interference; siRNA; Nanoparticle; Cellular pharmacokinetics; Intracellular trafficking
9.  Human Behavior-Based Particle Swarm Optimization 
The Scientific World Journal  2014;2014:194706.
Particle swarm optimization (PSO) has attracted many researchers interested in dealing with various optimization problems, owing to its easy implementation, few tuned parameters, and acceptable performance. However, the algorithm is easy to trap in the local optima because of rapid losing of the population diversity. Therefore, improving the performance of PSO and decreasing the dependence on parameters are two important research hot points. In this paper, we present a human behavior-based PSO, which is called HPSO. There are two remarkable differences between PSO and HPSO. First, the global worst particle was introduced into the velocity equation of PSO, which is endowed with random weight which obeys the standard normal distribution; this strategy is conducive to trade off exploration and exploitation ability of PSO. Second, we eliminate the two acceleration coefficients c1 and c2 in the standard PSO (SPSO) to reduce the parameters sensitivity of solved problems. Experimental results on 28 benchmark functions, which consist of unimodal, multimodal, rotated, and shifted high-dimensional functions, demonstrate the high performance of the proposed algorithm in terms of convergence accuracy and speed with lower computation cost.
doi:10.1155/2014/194706
PMCID: PMC4030565  PMID: 24883357
10.  Effect of Jingqian Zhitong Fang on Serum Sex Hormone Levels in Women with Primary Dysmenorrhea 
Primary dysmenorrhea is a common gynecological disease garnering increasing attention and research. To investigate the clinical therapeutic effects of Jingqian Zhitong Fang (JQF) and the differences in serum sex hormone levels during the treatment of primary dysmenorrhea, we selected 30 healthy volunteers and 60 individuals with primary dysmenorrhea. On the third day of the menstrual cycle, we used ELISA to determine the levels of serum prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (TEST), progesterone (PROG), and estradiol (E2) compared with normal levels and levels in the JQF group, the Western medicine group receiving continuous treatment during the first and third menstrual cycles, and the group followed up after the drug was stopped. We observed that after JQF treatment, the levels of the following hormones changed significantly: PRL, LH, TEST, and E2 levels decreased significantly and the PROG level increased significantly after treatment. After treatment with Western medicine, the serum levels of FSH, LH, PROG, and E2 showed no significant change. We conclude that the long-term effect of JQF treatment was better than that of Western medicine. JQF treatment of primary dysmenorrhea is related to adjustment of PRL, LH, TEST, and E2 hormone levels in the human body.
doi:10.1155/2014/876431
PMCID: PMC4009195  PMID: 24834101
11.  New insights into the functions and localization of the homeotic gene CDX2 in gastric cancer 
Gastric cancer is one of the most frequent cancers, and it ranks the third most common cancer in China. The most recently caudal-related homeobox transcription factor 2 (CDX2) is expressed in a large number of human gastrointestinal cancers. In addition, gastric epithelial cell mutations in CDX2 result in tumor promotion, which is characterized by cellular drug resistance and a high proclivity for developing cancer. A series of publications over the past years suggests a mechanism by which CDX2 overexpression results in multidrug resistance. CDX2 appears to forward control regenerating IV and the multidrug resistance 1 expression signaling pathway for regulation of cell drug resistance.
doi:10.3748/wjg.v20.i14.3960
PMCID: PMC3983451  PMID: 24744585
Caudal-related homeobox transcription factor 2; Gastric cancer; Intestinal metaplasia; Apoptosis; Drug resistance
12.  Application of Ultrasound on Monitoring the Evolution of the Collagen Fiber Reinforced nHAC/CS Composites In Vivo 
BioMed Research International  2014;2014:418302.
To date, fiber reinforce scaffolds have been largely applied to repair hard and soft tissues. Meanwhile, monitoring the scaffolds for long periods in vivo is recognized as a crucial issue before its wide use. As a consequence, there is a growing need for noninvasive and convenient methods to analyze the implantation remolding process in situ and in real time. In this paper, diagnostic medical ultrasound was used to monitor the in vivo bone formation and degradation process of the novel mineralized collagen fiber reinforced composite which is synthesized by chitosan (CS), nanohydroxyapatite (nHA), and collagen fiber (Col). To observe the impact of cells on bone remodeling process, the scaffolds were planted into the back of the SD rats with and without rat bone mesenchymal stem cells (rBMSCs). Systematic data of scaffolds in vivo was extracted from ultrasound images. Significant consistency between the data from the ultrasound and DXA could be observed (P < 0.05). This indicated that ultrasound may serve as a feasible alternative for noninvasive monitoring the evolution of scaffolds in situ during cell growth.
doi:10.1155/2014/418302
PMCID: PMC4009107  PMID: 24822206
13.  Identification of Resveratrol Oligomers as Inhibitors of Cystic Fibrosis Transmembrane Conductance Regulator by High-Throughput Screening of Natural Products from Chinese Medicinal Plants 
PLoS ONE  2014;9(4):e94302.
Inhibitors of cystic fibrosis transmembrane conductance regulator (CFTR) have been widely used for characterizing CFTR function in epithelial fluid transport and in diseases such as secretory diarrhea, polycystic kidney disease and cystic fibrosis. Few small molecule CFTR inhibitors have been discovered so far from combinatorial compound library. In the present study, we used a high throughput screening (HTS)-based natural product discovery strategy to identify new CFTR inhibitors from Chinese medicinal herbs. By screening 40,000 small molecule fractions from 500 herbal plants, we identified 42 positive fractions from 5 herbs and isolated two compounds that inhibited CFTR conductance from Chinese wild grapevine (Vitis amurensis Rupr). Mass spectrometry (MS) and nuclear magnetic resonance (NMR) studies determined the two active compounds as trans-ε-viniferin (TV) and r-2-viniferin (RV), respectively. Both compounds dose-dependently blocked CFTR-mediated iodide influx with IC50 around 20 μM. Further analysis by excised inside-out patch-clamp indicated strong inhibition of protein kinase A (PKA)-activated CFTR chloride currents by TV and RV. In ex vivo studies, TV and RV inhibited CFTR-mediated short-circuit Cl− currents in isolated rat colonic mucosa in a dose-dependent manner. In a closed-loop mouse model, intraluminal applications of TV (2.5 μg) and RV (4.5 μg) significantly reduced cholera toxin–induced intestinal fluid secretion. The present study identified two resveratrol oligomers as new CFTR inhibitors and validates our high-throughput screening method for discovery of bioactive compounds from natural products with complex chemical ingredients such as herbal plants.
doi:10.1371/journal.pone.0094302
PMCID: PMC3979805  PMID: 24714160
14.  Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction 
International Orthopaedics  2013;37(4):753-759.
Purpose
The aim of this study was to examine whether the addition of endothelial progenitor cells (EPCs) contributes to restoring the architectural and functional properties of newly formed bone for reconstruction of bone defects.
Methods
Bone marrow-derived EPCs and mesenchymal stem cells (MSCs) were co-seeded onto demineralized bone matrix (DBM) as a prevascularized tissue-engineered bone (TEB) for the repair of segmental bone defects to evaluate the effects of prevascularization of TEB on ameliorating morphological, haemodynamic and mechanical characteristics.
Results
The restoration of the intraosseous vasculature and medullary cavity was improved markedly compared to the non-prevascularized groups. The blood supply, biomechanical strength, and bone mineral density of the prevascularized group were significantly higher than those of the non-prevascularized groups during bone reconstruction.
Conclusions
The present study indicates that EPC-dependent prevascularization contributes to bone healing with structural reconstruction and functional recovery and may improve the understanding of correlation between angiogenesis and osteogenesis.
Electronic supplementary material
The online version of this article (doi:10.1007/s00264-012-1751-y) contains supplementary material, which is available to authorized users.
doi:10.1007/s00264-012-1751-y
PMCID: PMC3609986  PMID: 23288045
15.  The ABI4-Induced Arabidopsis ANAC060 Transcription Factor Attenuates ABA Signaling and Renders Seedlings Sugar Insensitive when Present in the Nucleus 
PLoS Genetics  2014;10(3):e1004213.
Seedling establishment is inhibited on media containing high levels (∼6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity.
Author Summary
In plants, sugars function as signaling molecules that control important processes such as photosynthesis, growth, carbon distribution over different organs and the production of storage compounds. Sugar signaling requires the phytohormone abscisic acid (ABA) and the ABA-induced regulatory transcription factor ABI4. In this study, a genetic analysis identified the transcription factor ANAC060 as an important component in establishing sugar sensitivity. It was found that, in natural Arabidopsis thaliana populations, the ANAC060 protein may occur as a long or a short version due to differential ANAC060 mRNA splicing caused by a single-nucleotide polymorphism (SNP). The long ANAC060 protein with an intact transmembrane domain (TMD) is excluded from the nucleus, whereas the short version lacking the TMD is always present in the nucleus, where it regulates gene expression. Functional analyses indicated that Col ANAC060 is involved in a novel negative feedback loop in the sugar-ABA signaling pathway. In this feedback loop model, ABI4 activates ANAC060 expression, but the nuclear presence of Col ANAC060 suppresses Glc-induced ABA accumulation and ABI4 expression, thereby reducing responsiveness to sugar signals.
doi:10.1371/journal.pgen.1004213
PMCID: PMC3953025  PMID: 24625790
16.  Exosomes Derived from Mesenchymal Stem Cells 
The functional mechanisms of mesenchymal stem cells (MSCs) have become a research focus in recent years. Accumulating evidence supports the notion that MSCs act in a paracrine manner. Therefore, the biological factors in conditioned medium, including exosomes and soluble factors, derived from MSC cultures are being explored extensively. The results from most investigations show that MSC-conditioned medium or its components mediate some biological functions of MSCs. Several studies have reported that MSC-derived exosomes have functions similar to those of MSCs, such as repairing tissue damage, suppressing inflammatory responses, and modulating the immune system. However, the mechanisms are still not fully understood and the results remain controversial. Compared with cells, exosomes are more stable and reservable, have no risk of aneuploidy, a lower possibility of immune rejection following in vivo allogeneic administration, and may provide an alternative therapy for various diseases. In this review, we summarize the properties and biological functions of MSC-derived exosomes and discuss the related mechanisms.
doi:10.3390/ijms15034142
PMCID: PMC3975389  PMID: 24608926
mesenchymal stem cell; exosome; protain; miRNA
17.  Association of apolipoprotein E polymorphism with maximal oxygen uptake after exercise training: a study of Chinese young adult 
Background
Although a few studies have been conducted, it is still unclear whether the apolipoprotein E (APOE) polymorphism is associated with maximal oxygen uptake (VO2max) after exercise training. The objective of this study was to examine if the APOE gene polymorphisms affect VO2max after exercise training in Chinese young adult.
Methods
A total of 360 Chinese young adult (180 male and 180 female) were recruited into this gender-specific cohorts. Anthropometrics, serum lipids, and VO2max were measured pre and post 6 months of supervised exercise training. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess the APOE gene polymorphisms.
Results
VO2max after exercise training increased significantly higher in carriers of E2/E3 in male [odds ratio (OR) =0.68, 95% confidence interval (CI) = 0.04, 1.32; P = 0.04] and female (OR =0.62, 95% CI = 0.05, 1.18; P = 0.03). VO2max after exercise training increased significantly higher in carriers of E3/E4 in male (OR =0.60, 95% CI = 0.09, 1.11; P = 0.02) and female (OR =0.62, 95% CI = 0.09, 1.15; P = 0.02). No significant differences were found in carriers of E2/E2, E2/E4, E3/E3, E4/E4 in either male nor female.
Conclusion
Our study found that APOE gene polymorphism was associated with VO2max levels after exercise training in Chinese young adult. In the future, further experiments will be necessary to confirm this finding and to find the possible mechanism.
doi:10.1186/1476-511X-13-40
PMCID: PMC3941565  PMID: 24571688
Apolipoprotein E; Gene polymorphism; Maximal oxygen uptake; Exercise training
18.  Brain metastasis of ALK positive anaplastic large cell lymphoma after a long-term disease free survival in an old adult 
Anaplastic large cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma composed of CD30-positive cells and now recognized as three different entities: primary cutaneous ALCL, primary systemic anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL and primary ALK-negative (ALK-) ALCL. ALK+ ALCL is supposed to have a better prognosis than ALK- ALCL. It is rarely metastasized to other sites, especially to the central nervous system (CNS). Herein, we present a rare case of systemic ALK+ ALCL which metastasized to the brain after a long-term disease free survival in an adult. Neuroimaging revealed a well-enhanced mass in the left frontal lobe. And it was completely resected. The results of the pathological and immunohistochemical studies were consistent with the metastasized ALK+ ALCL. The clinical findings, pathologic characteristics and treatment are described.
PMCID: PMC3971325  PMID: 24696735
ALCL; ALK-positive; CNS; metastasis
19.  Pulmonary enteric adenocarcinoma: a study of the clinicopathologic and molecular status of nine cases 
Pulmonary enteric adenocarcinoma (PEAC), a extremely rare variant of primary invasive adenocarcinoma of the lung, was recognized by the international multidisciplinary classification of lung adenocarcinoma which was proposed by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS), and the European Respiratory Society (ERS) published in early 2011. Histologically, PEAC is considered to be mainly composed of tall columnar cells arranged in an irregular glandular cavity or cribriform pattern with extensive central necrosis which show high resemblance to that of intestinal epithelia and colorectal carcinomas. Immunohistochemically, PEAC can not only expresses typical proteins common to lung primaries but is positive for at least one intestinal markers, such as CDX2, cytokeratin (CK) 20, MUC2, therefore, the differentiation of primary PEACs from metastatic colorectal cancers can be challenging. In this study, we report 9 cases of PEAC and a panel of immunohistochemical protein markers of CK7, CK20, thyroid transcription factor 1 (TTF-1), Napsin A, MUC2 and villin was analyzed with the comparison of 20 metastatic colorectal carcinomas (MCRs), and 20 typical primary adenocarcinomas (tPACs). As was expected, CK7 expression was documented in all 9 PEACs and 20 tPCAs while CK20 was significantly more prevalent in adenocarcinoma that originated from colorectal. Additionally, we evaluate the classical mutations of EGFR, KRAS in the 9 cases of PEACs, it turned out that all tumors were EGFR-wild and KRAS-wild types, which confirmed that PEAC has a separate phenotype from usual pulmonary adenocarcinoma.
PMCID: PMC3971340  PMID: 24696747
Pulmonary adenocarcinoma; enteric; clinicopathologic features; immunohistochemistry; EGFR/KRAS mutations
20.  Angiopoietin-Like 4 Confers Resistance to Hypoxia/Serum Deprivation-Induced Apoptosis through PI3K/Akt and ERK1/2 Signaling Pathways in Mesenchymal Stem Cells 
PLoS ONE  2014;9(1):e85808.
Angiopoietin-like 4 (ANGPTL4) is a potential anti-apoptotic agent for various cells. We examined the protective effect of ANGPTL4 on hypoxia/serum deprivation (SD)-induced apoptosis of MSCs, as well as the possible mechanisms. MSCs were obtained from rat bone marrow and cultured in vitro. Apoptosis was induced by hypoxia/SD for up to 24 hr, and assessed by flow cytometry and TUNEL assay. Expression levels of Akt, ERK1/2, focal adhesion kinase (FAK), Src, Bcl-2, Bax, cytochrome C and cleaved caspase-3 were detected by Western blotting. Integrin β1 mRNA was detected by qRT-PCR. Mitochondrial membrane potential was assayed using a membrane-permeable dye. Hypoxia/SD-induced apoptosis was significantly attenuated by recombinant rat ANGPTL4 in a concentration dependent manner. Moreover, ANGPTL4 decreased the hypoxia/SD-induced caspase-3 cleavage and the cytochrome C release, but increased the Bcl-2/Bax ratio and the mitochondrial membrane potential. Decreased expression of integrin β1, the ANGPTL4 receptor was observed during hypoxia/SD conditions, however, such decrease was reversed by ANGPTL4. In addition, ANGPTL4 induced integrin β1-associated FAK and Src phosphorylation, which was blocked by anti-integrin β1 antibody. ANGPTL4 also reversed the hypoxia/SD-induced decrease of Akt and ERK 1/2 phosphorylation, and the effect of ANGPTL4 was abolished by inhibitors of either integrins, ERK1/2, or phosphatidylinositol 3-kinase (PI3K). Blocking integrinβ1, Akt or ERK largely attenuated anti-apoptotic effect of ANGPTL4. ANGPTL4 protects MSCs from hypoxia/SD-induced apoptosis by interacting with integrins to stimulate FAK complex, leading to downstream ERK1/2 and PI3K/Akt signaling pathways and mimicking the pathway in which MSCs contact with the extracellular matrix.
doi:10.1371/journal.pone.0085808
PMCID: PMC3897528  PMID: 24465718
21.  Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China 
BMC Microbiology  2014;14:5.
Background
Shiga toxin-producing Escherichia coli (STEC) is recognized as an important human diarrheal pathogen. Swine plays an important role as a carrier of this pathogen. In this study we determined the prevalence and characteristics of STEC from healthy swine collected between May 2011 and August 2012 from 3 cities/provinces in China.
Results
A total of 1003 samples, including 326 fecal, 351 small intestinal contents and 326 colon contents samples, was analyzed. Two hundred and fifty five samples were stx-positive by PCR and 93 STEC isolates were recovered from 62 stx-positive samples. Twelve O serogroups and 19 O:H serotypes including 6 serotypes (O100:H20/[H20], O143:H38/[H38], O87:H10, O172:H30/[H30], O159:H16, O9:H30/[H30]) rarely found in swine and ruminants were identified. All 93 STEC isolates harbored stx2 only, all of which were stx2e subtype including 1 isolate being a new variant of stx2e. 53.76%, 15.05% and 2.15% STEC isolates carried astA, hlyA and ehxA respectively. Four STEC isolates harbored the high-pathogenicity island. Of the 15 adherence-associated genes tested, 13 (eae, efa1, iha, lpfAO113, lpfAO157/OI-154, lpfAO157/OI-141, toxB, saa, F4, F5, F6, F17 or F41) were all absent while 2 (paa and F18) were present in 7 and 4 STEC isolates respectively. The majority of the isolates were resistant to tetracycline (79.57%), nalidixic acid (78.49%), trimethoprim-sulfamethoxazole (73.12%) and kanamycin (55.91%). The STEC isolates were divided into 63 pulsed-field gel electrophoresis patterns and 21 sequence types (STs). Isolates of the same STs generally showed the same or similar drug resistance patterns. A higher proportion of STEC isolates from Chongqing showed multidrug resistance with one ST (ST3628) resistant to 14 antimicrobials.
Conclusions
Our results indicate that swine is a significant reservoir of STEC strains in China. Based on comparison by serotypes and sequence types with human strains and presence of virulence genes, the swine STEC may have a low potential to cause human disease.
doi:10.1186/1471-2180-14-5
PMCID: PMC3893481  PMID: 24393167
Shiga toxin-producing Escherichia coli (STEC); Shiga toxin; Multilocus sequence typing; Adhesin genes; Putative virulence genes; Antibiotic resistance; Pulsed-field gel electrophoresis; Swine
22.  Endothelial Dysfunction Exacerbates Renal Interstitial Fibrosis through Enhancing Fibroblast Smad3 Linker Phosphorylation in the Mouse Obstructed Kidney 
PLoS ONE  2013;8(12):e84063.
Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast proliferation and collagen production via enhanced Smad3 linker phosphorylation.
doi:10.1371/journal.pone.0084063
PMCID: PMC3877161  PMID: 24391884
23.  Genome Sequence of Sporolactobacillus laevolacticus DSM442, an Efficient Polymer-Grade d-Lactate Producer from Agricultural Waste Cottonseed as a Nitrogen Source 
Genome Announcements  2013;1(6):e01100-13.
Sporolactobacillus laevolacticus DSM442 is an efficient polymer-grade d-lactic acid producer from low-cost agricultural waste cottonseed powder as the sole nitrogen source. Here we present a 3.59-Mb assembly of its genome sequence, which might provide useful information to further improve the strain for higher production titers.
doi:10.1128/genomeA.01100-13
PMCID: PMC3873612  PMID: 24371202
24.  The Application of Fiber-Reinforced Materials in Disc Repair 
BioMed Research International  2013;2013:714103.
The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs) are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical properties. By now, there are still some problems for disc repair such as the unsatisfied static strength and dynamic properties for disc implants. The application of FRMs may resolve these problems to some extent. In this review, six parts such as background of FRMs in tissue repair, the comparison of mechanical properties between natural disc and some typical FRMs, the repair standard and FRMs applications in disc repair, and the possible research directions for FRMs' in the future are stated.
doi:10.1155/2013/714103
PMCID: PMC3870616  PMID: 24383057
25.  KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells 
Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects.
doi:10.1038/ijos.2013.77
PMCID: PMC3967319  PMID: 24158144
bone morphogenic protein; dental mesenchymal stem cell; epigenetics; KDM6B; odontogenic differentiation

Results 1-25 (132)