Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells 
Autophagy  2011;7(10):1108-1114.
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL's hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.
PMCID: PMC3242613  PMID: 21691148
APL; Beclin 1; apoptosis; ATRA; autophagy; differentiation
2.  The complex interplay between autophagy and NF-κB signaling pathways in cancer cells 
Tight regulation of both the NF-κB pathway and the autophagy process is necessary for maintenance of cellular homeostasis. Deregulation of both pathways is frequently observed in cancer cells and is associated with tumorigenesis and tumor cell resistance to cancer therapies. Autophagy is involved in several cellular functions regulated by NF-κB including cell survival, differentiation, senescence, inflammation, and immunity. On a molecular level, autophagy and NF-κB share common upstream signals and regulators and can control each other through positive or negative feedback loops, thus ensuring homeostatic responses. Here, we summarize and discuss the most recent discoveries that shed new light on the complex interplay between autophagy and NF-κB signaling pathways; this certainly has functional relevance in tumorigenesis and tumor responses to therapy.
PMCID: PMC3189824  PMID: 21994903
Autophagy; NF-κB; cancer; signaling pathways

Results 1-2 (2)