PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (48)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Using BRAFV600E as a marker of autophagy dependence in pediatric brain tumors 
Autophagy  2014;10(11):2077-2078.
Autophagy inhibition is a potential therapeutic strategy in central nervous system (CNS) tumors. The BRAFV600E mutation is known to affect autophagy. Our studies indicate CNS tumor cells with BRAFV600E mutant cells (but not wild type) display high rates of induced autophagy, are sensitive to autophagy inhibition, and display synergy when chloroquine is combined with the RAF kinase inhibitor vemurafenib or standard chemotherapeutics. Our studies also indicate chloroquine can improve vemurafenib sensitivity in intrinsically resistant cells and in a patient with induced-vemurafenib resistance. These findings suggest CNS tumors with BRAFV600E are autophagy-dependent and that identification of BRAFV600E may be a marker to identify pediatric patients with the best potential response to autophagy inhibition.
doi:10.4161/auto.36138
PMCID: PMC4502777  PMID: 25484091
brain tumors; pediatric; autophagy; BRAF; chloroquine; BRAF, B-Raf proto-oncogene; serine/threonine kinase; CNS, central nervous system; WT, wild type
2.  Consensus guidelines for the detection of immunogenic cell death 
Kepp, Oliver | Senovilla, Laura | Vitale, Ilio | Vacchelli, Erika | Adjemian, Sandy | Agostinis, Patrizia | Apetoh, Lionel | Aranda, Fernando | Barnaba, Vincenzo | Bloy, Norma | Bracci, Laura | Breckpot, Karine | Brough, David | Buqué, Aitziber | Castro, Maria G. | Cirone, Mara | Colombo, Maria I. | Cremer, Isabelle | Demaria, Sandra | Dini, Luciana | Eliopoulos, Aristides G. | Faggioni, Alberto | Formenti, Silvia C. | Fučíková, Jitka | Gabriele, Lucia | Gaipl, Udo S. | Galon, Jérôme | Garg, Abhishek | Ghiringhelli, François | Giese, Nathalia A. | Guo, Zong Sheng | Hemminki, Akseli | Herrmann, Martin | Hodge, James W. | Holdenrieder, Stefan | Honeychurch, Jamie | Hu, Hong-Min | Huang, Xing | Illidge, Tim M. | Kono, Koji | Korbelik, Mladen | Krysko, Dmitri V. | Loi, Sherene | Lowenstein, Pedro R. | Lugli, Enrico | Ma, Yuting | Madeo, Frank | Manfredi, Angelo A. | Martins, Isabelle | Mavilio, Domenico | Menger, Laurie | Merendino, Nicolò | Michaud, Michael | Mignot, Gregoire | Mossman, Karen L. | Multhoff, Gabriele | Oehler, Rudolf | Palombo, Fabio | Panaretakis, Theocharis | Pol, Jonathan | Proietti, Enrico | Ricci, Jean-Ehrland | Riganti, Chiara | Rovere-Querini, Patrizia | Rubartelli, Anna | Sistigu, Antonella | Smyth, Mark J. | Sonnemann, Juergen | Spisek, Radek | Stagg, John | Sukkurwala, Abdul Qader | Tartour, Eric | Thorburn, Andrew | Thorne, Stephen H. | Vandenabeele, Peter | Velotti, Francesca | Workenhe, Samuel T. | Yang, Haining | Zong, Wei-Xing | Zitvogel, Laurence | Kroemer, Guido | Galluzzi, Lorenzo
Oncoimmunology  2014;3(9):e955691.
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
doi:10.4161/21624011.2014.955691
PMCID: PMC4292729  PMID: 25941621
ATP release; autophagy; calreticulin; endoplasmic reticulum stress; HMGB1; immunotherapy; APC, antigen-presenting cell; ATF6, activating transcription factor 6; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BCL2, B-cell CLL/lymphoma 2 protein; CALR, calreticulin; CTL, cytotoxic T lymphocyte; Δψm, mitochondrial transmembrane potential; DAMP, damage-associated molecular pattern; DAPI, 4′,6-diamidino-2-phenylindole; DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide; EIF2A, eukaryotic translation initiation factor 2A; ER, endoplasmic reticulum; FLT3LG, fms-related tyrosine kinase 3 ligand; G3BP1, GTPase activating protein (SH3 domain) binding protein 1; GFP, green fluorescent protein; H2B, histone 2B; HMGB1, high mobility group box 1; HSP, heat shock protein; HSV-1, herpes simplex virus type I; ICD, immunogenic cell death; IFN, interferon; IL, interleukin; MOMP, mitochondrial outer membrane permeabilization; PDIA3, protein disulfide isomerase family A; member 3; PI, propidium iodide; RFP, red fluorescent protein; TLR, Toll-like receptor; XBP1, X-box binding protein 1
3.  Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent 
Autophagy  2014;10(10):1814-1826.
Chloroquine (CQ) is an antimalarial drug and late-stage inhibitor of autophagy currently FDA-approved for use in the treatment of rheumatoid arthritis and other autoimmune diseases. Based primarily on its ability to inhibit autophagy, CQ and its derivative, hydroxychloroquine, are currently being investigated as primary or adjuvant therapy in multiple clinical trials for cancer treatment. Oncogenic RAS has previously been shown to regulate autophagic flux, and cancers with high incidence of RAS mutations, such as pancreatic cancer, have been described in the literature as being particularly susceptible to CQ treatment, leading to the hypothesis that oncogenic RAS makes cancer cells dependent on autophagy. This autophagy “addiction” suggests that the mutation status of RAS in tumors could identify patients who would be more likely to benefit from CQ therapy. Here we show that RAS mutation status itself is unlikely to be beneficial in such a patient selection because oncogenic RAS does not always promote autophagy addiction. Moreover, oncogenic RAS can have opposite effects on both autophagic flux and CQ sensitivity in different cells. Finally, for any given cell type, the positive or negative effect of oncogenic RAS on autophagy does not necessarily predict whether RAS will promote or inhibit CQ-mediated toxicity. Thus, although our results confirm that different tumor cell lines display marked differences in how they respond to autophagy inhibition, these differences can occur irrespective of RAS mutation status and, in different contexts, can either promote or reduce chloroquine sensitivity of tumor cells.
doi:10.4161/auto.32135
PMCID: PMC4198365  PMID: 25136801
autophagy; autophagy dependence; cell death; chloroquine; RAS
4.  Clinical research and Autophagy 
Autophagy  2014;10(8):1357-1358.
doi:10.4161/auto.29159
PMCID: PMC4203512  PMID: 24991837
autophagy; cancer; phase I trial; translational; treatment
5.  Phase I clinical trial and pharmacodynamic evaluation of combination hydroxychloroquine and doxorubicin treatment in pet dogs treated for spontaneously occurring lymphoma 
Autophagy  2014;10(8):1415-1425.
Autophagy is a lysosomal degradation process that may act as a mechanism of survival in a variety of cancers. While pharmacologic inhibition of autophagy with hydroxychloroquine (HCQ) is currently being explored in human clinical trials, it has never been evaluated in canine cancers. Non-Hodgkin lymphoma (NHL) is one of the most prevalent tumor types in dogs and has similar pathogenesis and response to treatment as human NHL. Clinical trials in canine patients are conducted in the same way as in human patients, thus, to determine a maximum dose of HCQ that can be combined with a standard chemotherapy, a Phase I, single arm, dose escalation trial was conducted in dogs with spontaneous NHL presenting as patients to an academic, tertiary-care veterinary teaching hospital. HCQ was administered daily by mouth throughout the trial, beginning 72 h prior to doxorubicin (DOX), which was given intravenously on a 21-d cycle. Peripheral blood mononuclear cells and biopsies were collected before and 3 d after HCQ treatment and assessed for autophagy inhibition and HCQ concentration. A total of 30 patients were enrolled in the trial. HCQ alone was well tolerated with only mild lethargy and gastrointestinal-related adverse events. The overall response rate (ORR) for dogs with lymphoma was 93.3%, with median progression-free interval (PFI) of 5 mo. Pharmacokinetic analysis revealed a 100-fold increase in HCQ in tumors compared with plasma. There was a trend that supported therapy-induced increase in LC3-II (the cleaved and lipidated form of microtubule-associated protein 1 light chain 3/LC3, which serves as a maker for autophagosomes) and SQSTM1/p62 (sequestosome 1) after treatment. The superior ORR and comparable PFI to single-agent DOX provide strong support for further evaluation via randomized, placebo-controlled trials in canine and human NHL.
doi:10.4161/auto.29165
PMCID: PMC4203518  PMID: 24991836
autophagy; lymphoma; canine model; hydroxychloroquine; doxorubicin
6.  On the TRAIL to successful cancer therapy? Predicting and counteracting resistance against TRAIL-based therapeutics 
Oncogene  2012;32(11):1341-1350.
TRAIL and agonistic antibodies against TRAIL death receptors kill tumor cells while causing virtually no damage to normal cells. Several novel drugs targeting TRAIL receptors are currently in clinical trials. However, TRAIL resistance is a common obstacle in TRAIL based therapy and limits the efficiency of these drugs. In this review article we discuss different mechanisms of TRAIL resistance and how they can be predicted and therapeutically circumvented. In addition, we provide a brief overview of all TRAIL based clinical trials conducted so far. It is apparent that although the effects of TRAIL therapy are disappointingly modest overall, a small subset of patients responds very well to TRAIL. We argue that the true potential of targeting TRAIL death receptors in cancer can only be reached when we find efficient ways to select for those patients that are most likely to benefit from the treatment. To achieve this, it is crucial to identify biomarkers that can help us predict TRAIL sensitivity.
doi:10.1038/onc.2012.164
PMCID: PMC4502956  PMID: 22580613
7.  Identifying specific receptors for cargo-mediated autophagy 
Cell Research  2014;24(7):783-784.
Macroautophagy has been implicated in numerous diseases, yet our understanding of the proteins responsible for the turnover of specific cargo by autophagy is limited. In a recent paper published in Nature, Mancias et al. used quantitative proteomics to identify a cohort of autophagosome-enriched proteins, one of which, nuclear receptor coactivator 4 (NCOA4) was shown to be required for the selective delivery of ferritin to the lysosome, ultimately regulating intracellular iron by autophagic turnover of ferritin, or ferritinophagy.
doi:10.1038/cr.2014.56
PMCID: PMC4085758  PMID: 24797431
8.  Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry 
Autophagy  2014;10(7):1327-1334.
We detail here a protocol using tandem-tagged mCherry-EGFP-LC3 (C-G-LC3) to quantify autophagic flux in single cells by ratiometric flow cytometry and to isolate subpopulations of cells based on their relative levels of autophagic flux. This robust and sensitive method measures autophagic flux rather than autophagosome number and is an important addition to the autophagy researcher’s array of tools for measuring autophagy. Two crucial steps in this protocol are i) generate cells constitutively expressing C-G-LC3 with low to medium fluorescence and low fluorescence variability, and ii) correctly set up gates and voltage/gain on a properly equipped flow cytometer. We have used this method to measure autophagic flux in a variety of cell types and experimental systems using many different autophagy stimuli. On a sorting flow cytometer, this technique can be used to isolate cells with different levels of basal autophagic flux, or cells with variable induction of flux in response to a given stimulus for further analysis or experimentation. We have also combined quantification of autophagic flux with methods to measure apoptosis and cell surface proteins, demonstrating the usefulness of this protocol in combination with other flow cytometry labels and markers.
doi:10.4161/auto.29394
PMCID: PMC4203556  PMID: 24915460
autophagy; flow cytometry; autophagic flux; GFP-LC3; cell sorting; quantification
9.  Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers 
The Journal of Clinical Investigation  2015;125(4):1401-1418.
Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers.
doi:10.1172/JCI78018
PMCID: PMC4396475  PMID: 25798617
Oncology
10.  STAT3-Mediated Autophagy Dependence Identifies Subtypes of Breast Cancer where Autophagy Inhibition can be Efficacious 
Cancer research  2014;74(9):2579-2590.
Autophagy is a protein and organelle degradation pathway that is involved in diverse diseases including cancer. Recent evidence suggests that autophagy is a cell survival mechanism in tumor cells and that its inhibition especially in combination with other therapy could be beneficial but it remains unclear if all cancer cells behave the same way when autophagy is inhibited. We inhibited autophagy in a panel of breast cancer cell lines and found that some of them are dependent on autophagy for survival even in nutrient rich conditions without any additional stress while others need autophagy only when stressed. Survival under unstressed conditions is due to cell type specific autophagy regulation of STAT3 activity and this phenotype is enriched in triple negative cell lines. This autophagy-dependency affects response to therapy because autophagy inhibition reduced tumor growth in vivo in autophagy-dependent but not in autophagy-independent breast tumors while combination treatment with autophagy inhibitors and other agent was preferentially synergistic in autophagy-dependent cells. These results imply that autophagy-dependence represents a tumor cell specific characteristic where autophagy inhibition will be more effective. Moreover, our results suggest that autophagy inhibition might be a potential therapeutic strategy for triple negative breast cancers, which currently lack an effective targeted treatment.
doi:10.1158/0008-5472.CAN-13-3470
PMCID: PMC4008672  PMID: 24590058
autophagy; breast cancer; STAT3
11.  Autophagy controls the kinetics and extent of mitochondrial apoptosis by regulating PUMA levels 
Cell reports  2014;7(1):45-52.
Summary
Macroautophagy is thought to protect against apoptosis, however underlying mechanisms are poorly understood. We examined how autophagy affects canonical death receptor-induced mitochondrial outer membrane permeabilization (MOMP) and apoptosis. MOMP occurs at variable times in a population of cells and this is delayed by autophagy. Additionally, autophagy leads to inefficient MOMP after which some cells die through a slower process than typical apoptosis and, surprisingly, can recover and divide afterwards. These effects are associated with p62/SQSTM1-dependent selective autophagy causing PUMA levels to be kept low through an indirect mechanism whereby autophagy affects constitutive levels of PUMA mRNA. PUMA depletion is sufficient to prevent the sensitization to apoptosis that occurs when autophagy is blocked. Autophagy can therefore control apoptosis via a key regulator that makes MOMP faster and more efficient thus ensuring rapid completion of apoptosis. This identifies a molecular mechanism whereby cell fate decisions can be determined by autophagy.
doi:10.1016/j.celrep.2014.02.036
PMCID: PMC3992854  PMID: 24685133
12.  Excitotoxic glutamate insults block autophagic flux in hippocampal neurons 
Brain research  2014;1542:12-19.
Excitotoxic insults such as cerebral ischemia are thought to enhance neuronal autophagy, which is then thought to promote neuronal cell death. Excitotoxic insults indeed increase autophagy markers. Notably, however, autophagy markers can be increased either by autophagy induction (as this enhances their production) or by late-stage autophagy inhibition (as this prevents their degradation during autophagic flux). By comparing each condition with and without protease inhibitors that prevent autophagic degradation of the autophagy marker, the results of this study show that excitotoxic glutamate increases autophagy markers by a late-stage block of autophagy. Initially, this study set out to test if the CaMKII inhibitor tatCN21 mediates its post-insult neuroprotection by regulating autophagy. While tatCN21 partially inhibited basal autophagy in hippocampal neurons, it had no effects on the already blocked autophagy after excitotoxic glutamate insults, indicating that autophagy inhibition is not its neuroprotective mechanism. Additionally, while the autophagy inhibitor chloroquine had no effect, significant neuroprotection was seen instead with two drugs that enhance autophagy induction by different mechanisms, rapamycin (mTOR dependent) and trehalose (mTOR-independent). This suggests that therapeutic approaches should seek to enhance rather than inhibit autophagy, not only in neurodegenerative diseases (where such approach is widely accepted) but also after acute excitotoxic insults. Together, these findings significantly reshape the current view on the mutual cross-regulation of autophagy and excitotoxicity.
doi:10.1016/j.brainres.2013.10.032
PMCID: PMC3934833  PMID: 24505621
CaMKII; glutamate; excitotoxicity; autophagy; neuronal cell death
13.  Autophagy Inhibition Improves Chemosensitivity in BRAFV600E Brain Tumors 
Cancer discovery  2014;4(7):773-780.
Autophagy inhibition is a potential therapeutic strategy in cancer, but it is unknown which tumors will benefit. The BRAFV600E mutation has been identified as important in pediatric CNS tumors and is known to affect autophagy in other tumor types. We evaluated CNS tumor cells with BRAFV600E and found that mutant cells (but not wild type) display high rates of induced autophagy, are sensitive to pharmacologic and genetic autophagy inhibition, and display synergy when the clinically used autophagy inhibitor chloroquine was combined with the Raf inhibitor vemurafenib or standard chemotherapeutics. Importantly we also demonstrate chloroquine can improve vemurafenib sensitivity in a resistant ex vivo primary culture and provide the first demonstration in a patient harboring the V600E mutation treated with vemurafenib that addition of chloroquine can improve clinical outcomes. These findings suggest CNS tumors with BRAFV600E are autophagy-dependent and should be targeted with autophagy inhibition in combination with other therapeutic strategies.
doi:10.1158/2159-8290.CD-14-0049
PMCID: PMC4090283  PMID: 24823863
Brain tumors; pediatric; autophagy; BRAF; chloroquine
14.  Autophagy and Its Effects: Making Sense of Double-Edged Swords 
PLoS Biology  2014;12(10):e1001967.
Autophagy delivers cellular material to lysosomes for recycling. This article discusses why both good and bad effects arise because of autophagy and argues that exploiting this knowledge can treat disease.
doi:10.1371/journal.pbio.1001967
PMCID: PMC4196727  PMID: 25313680
15.  Inhibiting autophagy by shRNA knockdown 
Autophagy  2013;9(10):1449-1450.
A glance through Autophagy or any other journal in this field shows that it is very common to block autophagy by RNA interference-based knockdown of ATG mRNAs in mammalian cell lines. Our lab’s experience is that this approach can easily make for failed experiments because good knockdown of even essential autophagy regulators does not necessarily mean you will get good inhibition of autophagy, and, over time, cells can find ways to circumvent the inhibitory effects of the knockdown.
doi:10.4161/auto.24895
PMCID: PMC3974882  PMID: 23800703
autophagy; shRNA; ATG5; knockdown; RNA interference
16.  Targeting autophagy in breast cancer 
Macroautophagy (referred to as autophagy here) is an intracellular degradation pathway enhanced in response to a variety of stresses and in response to nutrient deprivation. This process provides the cell with nutrients and energy by degrading aggregated and damaged proteins as well as compromised organelles. Since autophagy has been linked to diverse diseases including cancer, it has recently become a very interesting target in breast cancer treatment. Indeed, current clinical trials are trying to use chloroquine or hydroxychloroquine, alone or in combination with other drugs to inhibit autophagy during breast cancer therapy since chemotherapy and radiation, regimens that are used to treat breast cancer, are known to induce autophagy in cancer cells. Importantly, in breast cancer, autophagy has been involved in the development of resistance to chemotherapy and to anti-estrogens. Moreover, a close relationship has recently been described between autophagy and the HER2 receptor. Here, we discuss some of the recent findings relating autophagy and cancer with a particular focus on breast cancer therapy.
doi:10.5306/wjco.v5.i3.224
PMCID: PMC4127596  PMID: 25114840
Autophagy; Cancer; Breast cancer; Chemotherapy; Radiation; Estrogen receptor; HER2; Triple negative breast cancer
17.  Autophagy variation within a cell population determines cell fate via selective degradation of Fap-1 
Nature cell biology  2013;16(1):47-54.
Autophagy regulates cell death both positively and negatively, but the molecular basis for this paradox remains inadequately characterized. We demonstrate here that transient cell-to-cell variations in autophagy can either promote cell death or survival depending on the stimulus and cell type. By separating cells with high and low basal autophagy by flow cytometry, we demonstrate that autophagy determines which cells live or die in response to death receptor activation. We have determined that selective autophagic degradation of the phosphatase Fap-1 promotes Fas apoptosis in Type I cells. Conversely, autophagy inhibits apoptosis in Type II cells or upon treatment with TRAIL in either Type I or II cells. These data illustrate that differences in autophagy in a cell population determine cell fate in a stimulus- and cell type-specific manner. This example of selective autophagy of an apoptosis regulator may represent a general mechanism for context-specific regulation of cell fate by autophagy.
doi:10.1038/ncb2886
PMCID: PMC3876036  PMID: 24316673
18.  Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer 
Cancer research  2013;73(11):3381-3392.
The epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab is the only targeted therapy approved for the treatment of head and neck squamous cell carcinoma (HNSCC), but is only effective in a minority of patients. Epithelial-to-mesenchymal transition (EMT) has been implicated as a drug resistance mechanism in multiple cancers, and the EGFR and Hedgehog pathways (HhP) are relevant to this process, but the interplay between the two pathways has not been defined in HNSCC. Here we show that HNSCC cells that were naturally sensitive to EGFR inhibition over time developed increased expression of the HhP transcription factor GLI1 as they became resistant after long-term EGFR inhibitor exposure. This robustly correlated with an increase in Vimentin expression. Conversely, the HhP negatively regulated an EGFR-dependent, EMT-like state in HNSCC cells, and pharmacological or genetic inhibition of HhP signaling pushed cells further into an EGFR-dependent phenotype, increasing expression of ZEB1 and VIM. In vivo treatment with cetuximab resulted in tumor shrinkage in four out of six HNSCC patient-derived xenografts; however they eventually re-grew. Cetuximab in combination with the HhP inhibitor IPI-926 eliminated tumors in two cases and significantly delayed re-growth in the other two cases. Expression of EMT genes TWIST and ZEB2 was increased in sensitive xenografts suggesting a possible resistant mesenchymal population. In summary, we report that EGFR-dependent HNSCC cells can undergo both EGFR-dependent and -independent EMT and HhP signaling is a regulator in both processes. Cetuximab plus IPI-926 forces tumor cells into an EGFR-dependent state delaying or completely blocking tumor recurrence.
doi:10.1158/0008-5472.CAN-12-4047
PMCID: PMC3674118  PMID: 23576557
Head and neck squamous cell cancer; hedgehog pathway; epidermal growth factor receptor pathway; epithelial to mesenchymal transition
19.  Autophagy and Cell Death 
Essays in biochemistry  2013;55:105-117.
Autophagy is intimately associated with eukaryotic cell death and apoptosis. Indeed in some cases the same proteins control both autophagy and apoptosis. Apoptotic signaling can regulate autophagy and conversely autophagy can regulate apoptosis (and most likely other cell death mechanisms). However the molecular connections between autophagy and cell death are complicated and, in different contexts, autophagy may promote or inhibit cell death. Surprisingly, although we know that, at its core, autophagy involves degradation of sequestered cytoplasmic material, and therefore presumably must be mediating its effects on cell death by degrading something, in most cases we have little idea what is being degraded to promote autophagy’s pro- or anti-death activities. Because autophagy is known to play important roles in health and many diseases, it is critical to understand the mechanisms by which autophagy interacts with and affects the cell death machinery since this will perhaps allow new ways to prevent or treat disease. In this chapter we discuss the current state of understanding of these processes.
doi:10.1042/bse0550105
PMCID: PMC3894632  PMID: 24070475
Apoptosis; caspase; autophagic cell death; TRAIL; BCL proteins; autophagy-mediated protection; ATG protein function
20.  Diphtheria Toxin-Epidermal Growth Factor Fusion Protein DAB389EGF for the treatment of bladder cancer 
Purpose
The novel fusion protein, DAB389EGF, is comprised of both the catalytic and translocation domains of diphtheria toxin that are fused to the human epidermal growth factor, providing a targeting and a toxicity component. We tested DAB389EGF for anti-tumor activity in both in vitro and in vivo urinary bladder cancer models.
Experimental Design
Human bladder cancer lines were treated with DAB389EGF and assessed for growth inhibition and clonogenic suppression. Using 6–8 week old female athymic nude mice implanted orthotopically with HTB9 cells, DAB389EGF was administered intravesically twice weekly for two weeks. The response of the luciferase expressing HTB9 cells was monitored via bioluminescence as the primary endpoint..
Results
Treatment response with DAB389EGF was specific and robust, with an IC50 ranging from 0.5 to 15ng/ml in 8 tested bladder cancer cell lines, but greater than 50ng/ml in the EGFR-negative H520 control cell line. Simulating short duration intravesical therapy used clinically, a 2 hour treatment exposure of DAB389EGF (10ng/ml) produced clonogenic suppression in three selected bladder cancer cell lines. In vivo, luciferase activity was suppressed in 5 of 6 mice treated with DAB389EGF (70 μl (1ng/μL) per mouse), as compared to only 1 of 6 mice treated with a control DT fusion protein. Histologic assessment of tumor clearance correlated with the bioluminescent changes observed with DAB389EGF treatment. Immunocompetent mice treated with intravesical DAB389EGF did not demonstrate any non-specific systemic toxicity.
Conclusions
The intravesical delivery of targeted-toxin fusion proteins is a novel treatment approach for non-muscle-invasive urinary bladder cancer. With appropriate targeting, the treatments are effective and well tolerated in vivo.
doi:10.1158/1078-0432.CCR-12-1258
PMCID: PMC3537889  PMID: 23172881
21.  EGFR-targeted diphtheria toxin stimulates TRAIL killing of glioblastoma cells by depleting anti-apoptotic proteins 
Journal of neuro-oncology  2009;95(2):10.1007/s11060-009-9914-4.
Current treatments for Glioblastoma multiforme (GBM) involve surgery, radiotherapy, and cytotoxic chemotherapy; however, these treatments are not effective and there is an urgent need for better treatments. We investigated GBM cell killing by a novel drug combination involving DT-EGF, an Epidermal Growth Factor Receptor-targeted bacterial toxin, and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) or antibodies that activate the TRAIL receptors DR4 and DR5. DT-EGF kills GBM cells by a non apoptotic mechanism whereas TRAIL kills by inducing apoptosis. GBM cells treated with DT-EGF and TRAIL were killed in a synergistic fashion in vitro and the combination was more effective than either treatment alone in vivo. Tumor cell death with the combination occurred by caspase activation and apoptosis due to DT-EGF positively regulating TRAIL killing by depleting FLIP, a selective inhibitor of TRAIL receptor-induced apoptosis. These data provide a mechanism-based rationale for combining targeted toxins and TRAIL receptor agonists to treat GBM.
doi:10.1007/s11060-009-9914-4
PMCID: PMC3811048  PMID: 19449148
Diphtheria toxin; TRAIL; apoptosis; autophagy
22.  Modulation of Pediatric Brain Tumor Autophagy and Chemosensitivity 
Journal of neuro-oncology  2011;106(2):10.1007/s11060-011-0684-4.
Brain and spinal tumors are the second most common malignancies in childhood after leukemia, and they remain the leading cause of death from childhood cancer. The role of autophagy, a catabolic cellular process used to provide energy during times of stress, in pediatric tumors is unknown. Here we present studies done in pediatric medulloblastoma cell lines (DAOY, ONS76) and atypical teratoid/rhabdoid tumor cell lines (BT-16, BT-12) to test this role. Autophagy was inhibited using siRNA against autophagy related genes ATG12 and ATG7 or pharmacologically induced using rapamyacin or inhibited using chloroquine to test the effect of autophagy on chemosensitivity. We found that when pediatric brain tumor cells are under starvation stress or exposed to known autophagy inducers, they show increased levels of autophagy. We also found that current chemotherapeutics (CCNU, cisplatin) stimulate autophagy in pediatric brain cancer cells. Silencing of ATG12 and ATG7 prevents this increase and autophagy can be pharmacologically stimulated and inhibited. Although autophagy can be induced and inhibited in these cell lines, the effect of autophagy on tumor cell killing is small. This may have significant clinical relevance in the future planning of therapeutic regimens for pediatric brain tumors.
doi:10.1007/s11060-011-0684-4
PMCID: PMC3811079  PMID: 21842312
23.  The vitamin E analog alpha-TEA stimulates tumor autophagy and enhances antigen cross-presentation 
Cancer research  2012;72(14):3535-3545.
The semi-synthetic vitamin E derivative alpha-tocopheryloxyacetic acid (α-TEA) induces tumor cell apoptosis and may offer a simple adjuvant supplement for cancer therapy if its mechanisms can be better understood. Here we report that α-TEA also triggers tumor cell autophagy and that it improves cross-presentation of tumor antigens to the immune system. α-TEA stimulated both apoptosis and autophagy in murine mammary and lung cancer cells and inhibition of caspase-dependent apoptosis enhanced α-TEA-induced autophagy. Cell exposure to α-TEA generated double membrane-bound vesicles indicative of autophagosomes, which efficiently cross-primed antigen-specific CD8+ T cells. Notably, vaccination with dendritic cells pulsed with α-TEA-generated autophagosomes reduced lung metastases and increased the survival of tumor-bearing mice. Taken together, our findings suggest that both autophagy and apoptosis signaling programs are activated during α-TEA-induced tumor cell killing. We suggest that the ability of α-TEA to stimulate autophagy and enhance cross-priming of CD8+ T cells might be exploited as an adjuvant strategy to improve stimulation of anti-tumor immune responses.
doi:10.1158/0008-5472.CAN-11-3103
PMCID: PMC3576035  PMID: 22745370
α-TEA; autophagy; cross-presentation; tumor immunity
24.  Specificity and prognostic validation of a polyclonal antibody to detect Six1 homeoprotein in ovarian cancer☆ 
Gynecologic oncology  2012;125(2):451-457.
Objective
The presence of Six1 mRNA gene portends a poor prognosis in ovarian cancer. We describe validation of a Six1 specific antibody and evaluate its association with tumorigenicity and prognosis in ovarian cancer.
Methods
A Six1 antibody (Six1cTerm) was raised to residues downstream of the Six1 homeodomain, representing its unique C-terminus as compared to other Six family members. Cells were transfected with Six1–Six6 and Western blot was performed to demonstrate Six1 specificity. Ovarian cancer cell lines were analyzed for Six1 mRNA and Six1cTerm and tumorigenicity was evaluated. Ovarian cancer tissue microarrays (OTMA) were analyzed for Six1cTerm by immunohistochemistry and scored by two blinded observers. The metastatic tumors of 15 stage IIIC high grade serous ovarian cancers were analyzed with Six1 mRNA and Six1cTerm and expression was compared to clinical factors and survival.
Results
The Six1cTerm antibody is specific for Six1. Cell line tumorigenicity in SCID mice correlates with Six1 levels both by mRNA(p=0.001, Mann–Whitney U test) and by protein (presence vs. absence, p=0.05 Fischer's Exact test). Six1 protein was present in up to 54% of OTMA specimens. Six1 protein expression in omental/peritoneal metastases correlated with worsened survival in a sample (n=15) of high grade serous stage IIIC ovarian cancers (p=0.001).
Conclusions
The Six1cTerm antibody is specific and able to detect Six1 in cell lines and tumor tissue. Six1 protein detection is common in ovarian cancer and is associated with tumorigenicity and poor prognosis in this group of patient samples. Six1cTerm antibody should be further validated as prognostic tool.
doi:10.1016/j.ygyno.2012.02.007
PMCID: PMC3607428  PMID: 22333994
Ovarian cancer; Homeoprotein; Homeobox gene; Six1; Prognosis
25.  Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy 
Autophagy  2012;8(2):200-212.
Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.
doi:10.4161/auto.8.2.18554
PMCID: PMC3336076  PMID: 22252008
chloroquine; cisplatin; PtdIns3K; LY294002; mTOR; rapamycin; autophagy; breast cancer

Results 1-25 (48)