PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("Ren, incong")
1.  Integrated regulation of autophagy and apoptosis by EEF2K controls cellular fate and modulates the efficacy of curcumin and velcade against tumor cells 
Autophagy  2013;9(2):208-219.
Endoplasmic reticulum (ER) stress induces both autophagy and apoptosis yet the molecular mechanisms and pathways underlying the regulation of these two cellular processes in cells undergoing ER stress remain less clear. We report here that eukaryotic elongation factor-2 kinase (EEF2K) is a critical controller of the ER stress-induced autophagy and apoptosis in tumor cells. DDIT4, a stress-induced protein, was required for transducing the signal for activation of EEF2K under ER stress. We further showed that phosphorylation of EEF2K at Ser398 was essential for induction of autophagy, while phosphorylation of the kinase at Ser366 and Ser78 exerted an inhibitory effect on autophagy. Suppression of the ER stress-activated autophagy via silencing of EEF2K aggravated ER stress and promoted apoptotic cell death in tumor cells. Moreover, inhibiting EEF2K by either RNAi or NH125, a small molecule inhibitor of the enzyme, rendered tumor cells more sensitive to curcumin and velcade, two anticancer agents that possess ER stress-inducing action. Our study indicated that the DDIT4-EEF2K pathway was essential for inducing autophagy and for determining the fate of tumor cells under ER stress, and suggested that inhibiting the EEF2K-mediated autophagy can deteriorate ER stress and lead to a greater apoptotic response, thereby potentiating the efficacy of the ER stress-inducing agents against cancer.
doi:10.4161/auto.22801
PMCID: PMC3552884  PMID: 23182879
EEF2K; ER stress; autophagy; apoptosis; tumor cells
2.  Phosphorylation of elongation factor-2 kinase differentially regulates the enzyme’s stability under stress conditions 
Eukaryotic elongation factor-2 kinase (eEF-2K) is a Ca2+/calmodulin-dependent enzyme that negatively regulates protein synthesis. eEF-2K has been shown to be up-regulated in cancer, and to play an important role in cell survival through inhibition of protein synthesis. Post-translational modification of protein synthesis machinery is important for its regulation and could be critical for survival of cancer cells encountering stress. The purpose of our study was to examine the regulation of eEF-2K during stress with a focus on the roles of phosphorylation in determining the stability of eEF-2K. We found that stress conditions (nutrient deprivation and hypoxia) increase eEF-2K protein. mRNA levels are only transiently increased and shortly return to normal, while eEF-2K protein levels continue to increase after further exposure to stress. A seemingly paradoxical decrease in eEF-2K stability was found when glioma cells were subjected to stress despite increased protein expression. We further demonstrated that phosphorylation of eEF-2K differentially affects the enzyme’s turnover under both normal and stress conditions, as evidenced by the different half-lives of phosphorylation-defective mutants of eEF-2K. We further found that the eEF-2K site (Ser398) phosphorylated by AMPK is pivotal to the protein’s stability, as the half-life of S398A mutant increases to greater than 24 h under both normal and stress conditions. These data indicate that eEF-2K is regulated at multiple levels with phosphorylation playing a critical role in the enzyme’s turnover under stressful conditions. The complexity of eEF-2K phosphorylation highlights the intricacies of protein synthesis control during cellular stress.
doi:10.1016/j.bbrc.2012.06.112
PMCID: PMC3614095  PMID: 22749997
eEF-2K; Phosphorylation; Enzyme stability; Protein synthesis; Glioblastoma; AMPK
3.  MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis* 
Molecular Cancer Therapeutics  2011;11(1):154-164.
Gefitinib, a small molecule inhibitor of the epidermal growth factor receptor tyrosine kinase, has been shown to induce autophagy as well as apoptosis in tumor cells. Yet, how to exploit autophagy and apoptosis to improve therapeutic efficacy of this drug against cancer remains to be explored. We reported here that MK-2206, a potent allosteric Akt inhibitor currently in Phase I trials in patients with solid tumors, could reinforce the cytocidal effect of gefitinib against glioma. We found that co-treatment with gefitinib and MK-2206 increased the cytotoxicity of this growth factor receptor inhibitor in the glioma cells, and the Compusyn synergism/antagonism analysis showed that MK-2206 acted synergistically with gefitinib. The benefit of the combinatorial treatment was also demonstrated in an intracranial glioma mouse model. In the presence of MK-2206, there was a significant increase in apoptosis in glioma cells treated with gefitinib. MK-2206 also augmented the autophagy-inducing effect of gefitinib, as evidenced by increased levels of the autophagy marker, LC3-II. Inhibition of autophagy by silencing of the key autophagy gene, beclin 1 or 3-MA, further increased the cytotoxicity of this combinatorial treatment, suggesting that autophagy induced by these agents plays a cytoprotective role. Notably, at 48 hours following the combinatorial treatment, the level of LC3-II began to decrease but Bim was significantly elevated, suggesting a switch from autophagy to apoptosis. Based on the synergistic effect of MK-2206 on gefitinib observed in this study, the combination of these two drugs may be utilized as a new therapeutic regimen for malignant glioma.
doi:10.1158/1535-7163.MCT-11-0606
PMCID: PMC3302182  PMID: 22057914
MK-2206; gefitinib; apoptosis; autophagy; glioblastoma
4.  NAC1 and HMGB1 enter a partnership for manipulating autophagy 
Autophagy  2011;7(12):1557-1558.
Our recent study revealed a new role of nucleus accumbens-1 (NAC1), a transcription factor belonging to the BTB/POZ gene family, in regulating autophagy. Moreover, we found that the high-mobility group box 1 (HMGB1), a chromatin-associated nuclear protein acting as an extracellular damage associated molecular pattern molecule (DAMP), is the downstream executor of NAC1 in modulating autophagy. In response to stress such as therapeutic insults, NAC1 increases the expression, cytosolic translocation and release of HMGB1; elevated level of the cytoplasmic HMGB1 leads to activation of autophagy. The NAC1-HMGB1 partnership may represent a previously unrecognized pathway that regulates autophagy in response to various stresses such as chemotherapy.
doi:10.4161/auto.7.12.17910
PMCID: PMC3327620  PMID: 22024751
Apoptosis; autophagy; cisplatin; HMGB1; NAC1
5.  Inhibition of eEF-2 kinase Sensitizes Human Glioma Cells to TRAIL and Down-regulates Bcl-xL Expression 
Elongation factor-2 kinase (eEF-2 kinase, also known as calmodulin-dependent protein kinase III), is a unique calcium/calmodulin-dependent enzyme that inhibits protein synthesis by phosphorylating and inactivating elongation factor-2 (eEF-2). We previously reported that expression/activity of eEF-2 kinase was up-regulated in several types of malignancies including Gliomas, and was associated with response of tumor cells to certain therapeutic stress. In the current study, we sought to determine whether eEF-2 kinase expression affected sensitivity of glioma cells to treatment with tumor the necrosis factor-related apoptosis-inducing ligand (TRAIL), a targeted therapy able to induce apoptosis in cancer cells but causes no toxicity in most normal cells. We found that inhibition of eEF-2 kinase by RNA interference (RNAi) or by a pharmacological inhibitor (NH125) enhanced TRAIL-induced apoptosis in the human glioma cells, as evidenced by an increase in apoptosis in the tumor cells treated with eEF-2 kinase siRNA or the eEF-2 kinase inhibitor. We further demonstrated that sensitization of tumor cells to TRAIL was accompanied by a down-regulation of the anti-apoptotic protein, Bcl-xL, and that overexpression of Bcl-xL could abrogate the sensitizing effect of inhibiting eEF-2 kinase on TRAIL. The results of this study may help devise a new therapeutic strategy for enhancing the efficacy of TRAIL against malignant glioma by targeting eEF-2 kinase.
doi:10.1016/j.bbrc.2011.09.038
PMCID: PMC3210449  PMID: 21945617
eEF-2 kinase; TRAIL; Bcl-xl; apoptosis; glioblastoma
6.  NAC1 Modulates Sensitivity of Ovarian Cancer Cells to Cisplatin via Altering the HMGB1-Mediated Autophagic Response* 
Oncogene  2011;31(8):1055-1064.
Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, is known to play important roles in proliferation and growth of tumor cells and in chemotherapy resistance. Yet, the mechanisms underlying how NAC1 contributes to drug resistance remain largely unclear. We reported here that autophagy was involved in NAC1-mediated resistance to cisplatin, a commonly used chemotherapeutic drug in the treatment of ovarian cancer. We found that treatment with cisplatin caused an activation of autophagy in ovarian cancer cell lines, A2780, OVCAR3, and SKOV3. We further demonstrated that knockdown of NAC1 by RNAi or inactivation of NAC1 by inducing the expression of a NAC1 deletion mutant that contains only the BTB/POZ domain significantly inhibited the cisplatin-induced autophagy, resulting in increased cisplatin cytotoxicity. Moreover, inhibition of autophagy and sensitization to cisplatin by NAC1 knockdown or inactivation were accompanied by induction of apoptosis. To confirm that the sensitizing effect of NAC1 inhibition on the cytotoxicity of cisplatin was attributed to suppression of autophagy, we assessed the effects of the autophagy inhibitors, 3-MA and chloroquine, and siRNAs targeting beclin 1 or Atg5, on the cytotoxicity of cisplatin. Treatment with 3-MA, chloroquine or beclin 1 and Atg5-targeted siRNA also enhanced the sensitivity of SKOV3, A2780 and OVCAR3 cells to cisplatin, indicating that suppression of autophagy indeed renders tumor cells more sensitive to cisplatin. Regulation of autophagy by NAC1 was mediated via high mobility group box1 (HMGB1), as the functional status of NAC1 was associated with the expression, translocation and release of HMGB1. The results of our study not only revealed a new mechanism determining cisplatin sensitivity, but also identified NAC1 as a novel regulator of autophagy. Thus, the NAC1- mediated autophagy may be exploited as a new target for enhancing the efficacy of cisplatin against ovarian cancer and other types of malignancies.
doi:10.1038/onc.2011.290
PMCID: PMC3275651  PMID: 21743489
NAC1; autophagy; apoptosis; HMGB1; cisplatin; ovarian cancer
7.  eEF-2 kinase 
Autophagy  2011;7(6):660-661.
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases.
doi:10.4161/auto.7.6.15385
PMCID: PMC3127050  PMID: 21460616
eEF-2 kinase; Akt; autophagy; apoptosis; MK-2206; cancer treatment
8.  Rational Incorporation of Selenium into Temozolomide Elicits Superior Antitumor Activity Associated with Both Apoptotic and Autophagic Cell Death 
PLoS ONE  2012;7(4):e35104.
Background
The DNA alkylating agent temozolomide (TMZ) is widely used in the treatment of human malignancies such as glioma and melanoma. On the basis of previous structure-activity studies, we recently synthesized a new TMZ selenium analog by rationally introducing an N-ethylselenocyanate extension to the amide functionality in TMZ structure.
Principal Findings
This TMZ-Se analog showed a superior cytotoxicity to TMZ in human glioma and melanoma cells and a more potent tumor-inhibiting activity than TMZ in mouse glioma and melanoma xenograft model. TMZ-Se was also effective against a TMZ-resistant glioma cell line. To explore the mechanism underlying the superior antitumor activity of TMZ-Se, we compared the effects of TMZ and TMZ-Se on apoptosis and autophagy. Apoptosis was significantly increased in tumor cells treated with TMZ-Se in comparison to those treated with TMZ. TMZ-Se also triggered greater autophagic response, as compared with TMZ, and suppressing autophagy partly rescued cell death induced by TMZ-Se, indicating that TMZ-Se-triggered autophagy contributed to cell death. Although mRNA level of the key autophagy gene, Beclin 1, was increased, Beclin 1 protein was down-regulated in the cells treated with TMZ-Se. The decrease in Beclin 1 following TMZ-Se treatment were rescued by the calpain inhibitors and the calpain-mediated degradation of Beclin1 had no effect on autophagy but promoted apoptosis in cells treated with TMZ-Se.
Conclusions
Our study indicates that incorporation of Se into TMZ can render greater potency to this chemotherapeutic drug.
doi:10.1371/journal.pone.0035104
PMCID: PMC3320619  PMID: 22496897
9.  eEF-2 Kinase Dictates Crosstalk between Autophagy and Apoptosis Induced by Akt Inhibition, thereby Modulating Cytotoxicity of Novel Akt Inhibitor MK-2206* 
Cancer research  2011;71(7):2654-2663.
Inhibition of the survival kinase Akt can trigger apoptosis but also has been found to activate autophagy, which may confound tumor attack. In this study, we investigated regulatory mechanisms through which apoptosis and autophagy were modulated in tumor cells subjected to Akt inhibition by MK-2206, the first allosteric small molecule inhibitor of Akt to enter clinical development. In human glioma cells, Akt inhibition by MK-2206 or siRNA-mediated attenuation strongly activated autophagy, whereas silencing of eukaryotic elongation factor-2 (eEF-2) kinase, a protein synthesis regulator, blunted this autophagic response. Suppression of MK-2206-induced autophagy by eEF-2 silencing was accompanied by a promotion of apoptotic cell death. Similarly, siRNA-mediated inhibition of eEF-2 kinase potentiated the efficacy of MK-2206 against glioma cells. Together, these results demonstrated that blunting autophagy and augmenting apoptosis by inhibition of eEF-2 kinase could modulate the sensitivity of glioma cells to Akt inhibition. Our findings suggest that targeting eEF-2 kinase may reinforce the anti-tumor efficacy of Akt inhibitors such as MK-2206.
doi:10.1158/0008-5472.CAN-10-2889
PMCID: PMC3210447  PMID: 21307130
Elongation factor-2 kinase; Akt; Autophagy; Apoptosis; MK-2206; Glioblastoma
10.  Interaction of Beclin 1 with Survivin Regulates Sensitivity of Human Glioma Cells to TRAIL-induced Apoptosis 
FEBS letters  2010;584(16):3519-3524.
We reported a novel interaction between Beclin 1, a key regulator of autophagy, and survivin, a member of the IAP family. We found that knock-down of Beclin 1 down-regulated survivin protein, and the turnover rate of survivin was increased when Beclin 1 expression was silenced. Knock-down of Beclin 1 sensitized glioma cells to TRAIL-induced apoptosis, and introduction of survivin antagonized the sensitizing effect, suggesting that down-regulation of survivin mediates the enhanced sensitivity to TRAIL-induced apoptosis. These results demonstrate a novel interaction between Beclin 1 and survivin, and may provide a potential mechanism underlying the cross-talk between autophagy and apoptosis.
doi:10.1016/j.febslet.2010.07.018
PMCID: PMC3210451  PMID: 20638385
apoptosis; autophagy; Beclin 1; survivin; TRAIL
11.  A role for p53 in the regulation of extracellular matrix metalloproteinase inducer in human cancer cells 
Cancer Biology & Therapy  2009;8(18):1722-1728.
EMMPRIN, a transmembrane glycoprotein known to pro-mote survival, invasion and metastasis of tumor cells through multiple pathways and mechanisms, has been found to be overexpressed in various types of cancer cells. Here we report that loss of the function of p53, a tumor suppressor protein that is mutated in approximately 50% of human cancers, contributes to the upregulation of EMMPRIN protein. We observed an inverse association between the activity of p53 and the level of EMMPRIN protein in several cancer cell lines. We further demonstrated that p53 is able to negatively regulate EMMPRIN protein, but downregulation of EMMPRIN by p53 is independent of repression of the EMMPRIN transcription. Furthermore, downregulation of EMMPRIN by p53 can be rescued by chloroquine, a lysosome inhibitor, but not by MG132, a proteasome inhibitor, suggesting an involvement of the lysosomal pathway in the p53-regulated degradation of EMMPRIN. Downregulation of EMMPRIN by p53 leads to a decrease in the activity of MMP-9 and an inhibition of tumor cell invasion. Our study suggests that the upregulation of EMMPRIN seen in many cancers can be attributed to, at least in part, the dysfunction of p53 and thus provides new evidence for the roles of p53 in tumor development and progression.
doi:10.4161/cbt.8.18.9207
PMCID: PMC3630173  PMID: 19597352
p53; extracellular matrix metalloproteinase inducer; matrix metalloproteinase; tumor progression
12.  Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells 
Autophagy  2009;5(6):816-823.
beclin 1, the mammalian homologue of the yeast Atg6, is a key autophagy-promoting gene that plays a critical role in the regulation of cell death and survival of various types of cells. However, recent studies have observed that the expression of beclin 1 is altered in certain diseases including cancers. The causes underlying the aberrant expression of beclin 1 remain largely unknown. We report here that microRNAs (miRNAs), a class of endogenous, 22–24 nucleotide noncoding RNA molecules able to affect stability and translation of mRNA, may represent a previously unrecognized mechanism for regulating beclin 1 expression and autophagy. We demonstrated that beclin 1 is a potential target for miRNA miR-30a, and this miRNA could negatively regulate beclin 1 expression resulting in decreased autophagic activity. Treatment of tumor cells with the miR-30a mimic decreased, and with the antagomir increased, the expression of beclin 1 mRNA and protein. Dual luciferase reporter assay confirmed that the miR-30a binding sequences in the 3′-UTR of beclin 1 contribute to the modulation of beclin 1 expression by miR-30a. Furthermore, inhibition of beclin 1 expression by the miR-30a mimic blunted activation of autophagy induced by rapamycin. Our study of the role of miR-30a in regulating beclin 1 expression and autophagy reveals a novel function for miRNA in a critical cellular event with significant impacts in cancer development, progression and treatment, and in other diseases.
PMCID: PMC3669137  PMID: 19535919
beclin 1; autophagy; microRNA; miR-30a; gene expression
13.  Involvement of Caveolin-1 in Repair of DNA Damage through Both Homologous Recombination and Non-Homologous End Joining 
PLoS ONE  2010;5(8):e12055.
Background
Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis.
Methodology/Principal Findings
In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency.
Conclusion/Significance
Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity.
doi:10.1371/journal.pone.0012055
PMCID: PMC2917373  PMID: 20700465
14.  Silencing of Elongation Factor-2 Kinase Potentiates the Effect of 2-Deoxy-D-Glucose against Human Glioma Cells through Blunting of Autophagy* 
Cancer research  2009;69(6):2453-2460.
2-Deoxy-D-glucose (2-DG), a synthetic glucose analog that acts as a glycolytic inhibitor, is currently being evaluated in the clinic as an anticancer agent. In this study, we observed that treatment of human glioma cells with 2-DG activated autophagy, a highly conserved cellular response to metabolic stress and a catabolic process of self-digestion of intracellular organelles for energy utilization and survival in stressed cells. The induction of autophagy by 2-DG was associated with activation of elongation factor-2 kinase (eEF-2 kinase), a structurally and functionally unique enzyme that phosphorylates eEF-2 leading to loss of affinity of this elongation factor for the ribosome and to termination of protein elongation. We also showed that inhibition of eEF-2 kinase by RNA interference blunted the 2-DG-induced autophagic response, resulted in a greater reduction of cellular ATP contents, and increased the sensitivity of tumor cells to the cytotoxic effect of 2-DG. Furthermore, the blunted autophagy and enhanced 2-DG cytotoxicity were accompanied by augmentation of apoptosis in cells in which eEF-2 kinase expression was knocked down. The results of this study indicate that the energy stress and cytotoxicity caused by 2-DG can be accelerated by inhibition of eEF-2 kinase, and suggest that targeting eEF-2 kinase – regulated autophagic survival pathway may represent a novel approach to sensitizing cancer cells to glycolytic inhibitors.
doi:10.1158/0008-5472.CAN-08-2872
PMCID: PMC2907516  PMID: 19244119
Elongation factor-2 kinase; 2-Deoxy-D-Glucose; Glycolysis; Autophagy; Protein synthesis; Glioblastoma
15.  Cytoprotective Effect of the Elongation Factor-2 Kinase-Mediated Autophagy in Breast Cancer Cells Subjected to Growth Factor Inhibition 
PLoS ONE  2010;5(3):e9715.
Background
Autophagy is a highly conserved and regulated cellular process employed by living cells to degrade proteins and organelles as a response to metabolic stress. We have previously reported that eukaryotic elongation factor-2 kinase (eEF-2 kinase, also known as Ca2+/calmodulin-dependent protein kinase III) can positively modulate autophagy and negatively regulate protein synthesis. The purpose of the current study was to determine the role of the eEF-2 kinase-regulated autophagy in the response of breast cancer cells to inhibitors of growth factor signaling.
Methodology/Principal Findings
We found that nutrient depletion or growth factor inhibitors activated autophagy in human breast cancer cells, and the increased activity of autophagy was associated with a decrease in cellular ATP and an increase in activities of AMP kinase and eEF-2 kinase. Silencing of eEF-2 kinase relieved the inhibition of protein synthesis, led to a greater reduction of cellular ATP, and blunted autophagic response. We further showed that suppression of eEF-2 kinase-regulated autophagy impeded cell growth in serum/nutrient-deprived cultures and handicapped cell survival, and enhanced the efficacy of the growth factor inhibitors such as trastuzumab, gefitinib, and lapatinib.
Conclusion/Significance
The results of this study provide new evidence that activation of eEF-2 kinase-mediated autophagy plays a protective role for cancer cells under metabolic stress conditions, and that targeting autophagic survival may represent a novel approach to enhancing the effectiveness of growth factor inhibitors.
doi:10.1371/journal.pone.0009715
PMCID: PMC2838786  PMID: 20300520

Results 1-15 (15)