Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells 
PLoS ONE  2014;9(7):e100152.
Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal.
Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.
Principal Findings
Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.
These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.
PMCID: PMC4102474  PMID: 25033388
2.  Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis 
Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation.
We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level.
Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF-α, NOTCH1, c-MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation.
Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-511X-13-142) contains supplementary material, which is available to authorized users.
PMCID: PMC4176829  PMID: 25182732
Polyunsaturated fatty acids (PUFAs); Glioma; Irradiation; Gene expression; miRNA expression
3.  Pattern Triggered Immunity (PTI) in Tobacco: Isolation of Activated Genes Suggests Role of the Phenylpropanoid Pathway in Inhibition of Bacterial Pathogens 
PLoS ONE  2014;9(8):e102869.
Pattern Triggered Immunity (PTI) or Basal Resistance (BR) is a potent, symptomless form of plant resistance. Upon inoculation of a plant with non-pathogens or pathogenicity-mutant bacteria, the induced PTI will prevent bacterial proliferation. Developed PTI is also able to protect the plant from disease or HR (Hypersensitive Response) after a challenging infection with pathogenic bacteria. Our aim was to reveal those PTI-related genes of tobacco (Nicotiana tabacum) that could possibly play a role in the protection of the plant from disease.
Methodology/Principal Findings
Leaves were infiltrated with Pseudomonas syringae pv. syringae hrcC- mutant bacteria to induce PTI, and samples were taken 6 and 48 hours later. Subtraction Suppressive Hybridization (SSH) resulted in 156 PTI-activated genes. A cDNA microarray was generated from the SSH clone library. Analysis of hybridization data showed that in the early (6 hpi) phase of PTI, among others, genes of peroxidases, signalling elements, heat shock proteins and secondary metabolites were upregulated, while at the late phase (48 hpi) the group of proteolysis genes was newly activated. Microarray data were verified by real time RT-PCR analysis. Almost all members of the phenyl-propanoid pathway (PPP) possibly leading to lignin biosynthesis were activated. Specific inhibition of cinnamic-acid-4-hydroxylase (C4H), rate limiting enzyme of the PPP, decreased the strength of PTI - as shown by the HR-inhibition and electrolyte leakage tests. Quantification of cinnamate and p-coumarate by thin-layer chromatography (TLC)-densitometry supported specific changes in the levels of these metabolites upon elicitation of PTI.
We believe to provide first report on PTI-related changes in the levels of these PPP metabolites. Results implicated an actual role of the upregulation of the phenylpropanoid pathway in the inhibition of bacterial pathogenic activity during PTI.
PMCID: PMC4125134  PMID: 25101956
4.  Extracellular deposition of matrilin-2 controls the timing of the myogenic program during muscle regeneration 
Journal of Cell Science  2014;127(15):3240-3256.
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2−/− relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2−/− fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
PMCID: PMC4117230  PMID: 24895400
Muscle regeneration; Myogenesis; Matn2 shRNA; TGF-β signaling; BMP signaling; NFI; Trf3
5.  Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability 
Cytotechnology  2012;65(3):395-406.
The nasal pathway represents an alternative route for non-invasive systemic administration of drugs. The main advantages of nasal drug delivery are the rapid onset of action, the avoidance of the first-pass metabolism in the liver and the easy applicability. In vitro cell culture systems offer an opportunity to model biological barriers. Our aim was to develop and characterize an in vitro model based on confluent layers of the human RPMI 2650 cell line. Retinoic acid, hydrocortisone and cyclic adenosine monophosphate, which influence cell attachment, growth and differentiation have been investigated on the barrier formation and function of the nasal epithelial cell layers. Real-time cell microelectronic sensing, a novel label-free technique was used for dynamic monitoring of cell growth and barrier properties of RPMI 2650 cells. Treatments enhanced the formation of adherens and tight intercellular junctions visualized by electron microscopy, the presence and localization of junctional proteins ZO-1 and β-catenin demonstrated by fluorescent immunohistochemistry, and the barrier function of nasal epithelial cell layers. The transepithelial resistance of the RPMI 2650 cell model reached 50 to 200 Ω × cm2, the permeability coefficient for 4.4 kDa FITC-dextran was 9.3 to 17 × 10−6 cm/s, in agreement with values measured on nasal mucosa from in vivo and ex vivo experiments. Based on these results human RPMI 2650 cells seem to be a suitable nasal epithelial model to test different pharmaceutical excipients and various novel formulations, such as nanoparticles for toxicity and permeability.
Electronic supplementary material
The online version of this article (doi:10.1007/s10616-012-9493-7) contains supplementary material, which is available to authorized users.
PMCID: PMC3597180  PMID: 22940916
RPMI 2650; Human nasal epithelial cell; Retinoic acid; Hydrocortisone; Cell microelectronic sensing; Paracellular permeability
6.  Anti-Inflammatory Effect of Recreational Exercise in TNBS-Induced Colitis in Rats: Role of NOS/HO/MPO System 
There are opposite views in the available literature: Whether physical exercise has a protective effect or not on the onset of inflammatory bowel disease (IBD). Therefore, we investigated the effects of recreational physical exercise before the induction of colitis. After 6 weeks of voluntary physical activity (running wheel), male Wistar rats were treated with TNBS (10 mg). 72 hrs after trinitrobenzene sulphonic acid (TNBS) challenge we measured colonic gene (TNF-α, IL-1β, CXCL1 and IL-10) and protein (TNF-α) expressions of various inflammatory mediators and enzyme activities of heme oxygenase (HO), nitric oxide synthase (NOS), and myeloperoxidase (MPO) enzymes. Wheel running significantly increased the activities of HO, constitutive NOS (cNOS) isoform. Furthermore, 6 weeks of running significantly decreased TNBS-induced inflammatory markers, including extent of lesions, severity of mucosal damage, and gene expression of IL-1β, CXCL1, and MPO activity, while IL-10 gene expression and cNOS activity were increased. iNOS activity decreased and the activity of HO enzyme increased, but not significantly, compared to the sedentary TNBS-treated group. In conclusion, recreational physical exercise can play an anti-inflammatory role by downregulating the gene expression of proinflammatory mediators, inducing anti-inflammatory mediators, and modulating the activities of HO and NOS enzymes in a rat model of colitis.
PMCID: PMC3941240  PMID: 24683438
7.  Lipid droplet binding thalidomide analogs activate endoplasmic reticulum stress and suppress hepatocellular carcinoma in a chemically induced transgenic mouse model 
Hepatocellular carcinoma (HCC) is the most frequent and aggressive primary tumor of the liver and it has limited treatment options.
In this study, we report the in vitro and in vivo effects of two novel amino-trifluoro-phtalimide analogs, Ac-915 and Ac-2010. Both compounds bind lipid droplets and endoplasmic reticulum membrane, and interact with several proteins with chaperone functions (HSP60, HSP70, HSP90, and protein disulfide isomerase) as determined by affinity chromatography and resonant waveguide optical biosensor technology. Both compounds inhibited protein disulfide isomerase activity and induced cell death of different HCC cells at sub or low micromolar ranges detected by classical biochemical end-point assay as well as with real-time label-free measurements. Besides cell proliferation inhibiton, analogs also inhibited cell migration even at 250 nM. Relative biodistribution of the analogs was analysed in native tissue sections of different organs after administration of drugs, and by using fluorescent confocal microscopy based on the inherent blue fluorescence of the compounds. The analogs mainly accumulated in the liver. The effects of Ac-915 and Ac-2010 were also demonstrated on the advanced stages of hepatocarcinogenesis in a transgenic mouse model of N-nitrosodiethylamine (DEN)-induced HCC. Significantly less tumor development was found in the livers of the Ac-915- or Ac-2010-treated groups compared with control mice, characterized by less liver tumor incidence, fewer tumors and smaller tumor size.
These results imply that these amino-trifluoro-phthalimide analogs could serve potent clinical candidates against HCC alone or in combination with dietary polyunsaturated fatty acids.
PMCID: PMC4222488  PMID: 24268070
Hepatocellular carcinoma; Lipid droplet; Heat-shock proteins; Protein disulfide isomerase; Reactive oxigen species
8.  Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats 
Metabolic syndrome (coexisting visceral obesity, dyslipidemia, hyperglycemia, and hypertension) is a prominent risk factor for cardiovascular morbidity and mortality, however, its effect on cardiac gene expression pattern is unclear. Therefore, we examined the possible alterations in cardiac gene expression pattern in male Zucker Diabetic Fatty (ZDF) rats, a model of metabolic syndrome.
Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were measured at 6, 16, and 25 wk of age in male ZDF and lean control rats. Oral glucose tolerance test was performed at 16 and 25 wk of age. At week 25, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 14921 genes. Expression of selected genes was confirmed by qRT-PCR.
Fasting blood glucose, serum insulin, cholesterol and triglyceride levels were significantly increased, glucose tolerance and insulin sensitivity were impaired in ZDF rats compared to leans. In hearts of ZDF rats, 36 genes showed significant up-regulation and 49 genes showed down-regulation as compared to lean controls. Genes with significantly altered expression in the heart due to metabolic syndrome includes functional clusters of metabolism (e.g. 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2; argininosuccinate synthetase; 2-amino-3-ketobutyrate-coenzyme A ligase), structural proteins (e.g. myosin IXA; aggrecan1), signal transduction (e.g. activating transcription factor 3; phospholipase A2; insulin responsive sequence DNA binding protein-1) stress response (e.g. heat shock 70kD protein 1A; heat shock protein 60; glutathione S-transferase Yc2 subunit), ion channels and receptors (e.g. ATPase, (Na+)/K+ transporting, beta 4 polypeptide; ATPase, H+/K+ transporting, nongastric, alpha polypeptide). Moreover some other genes with no definite functional clusters were also changed such as e.g. S100 calcium binding protein A3; ubiquitin carboxy-terminal hydrolase L1; interleukin 18. Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by metabolic syndrome.
Metabolic syndrome significantly alters cardiac gene expression profile which may be involved in development of cardiac pathologies in the presence of metabolic syndrome.
PMCID: PMC3599923  PMID: 23320804
Metabolic syndrome; Diabetes mellitus type 2; Hyperlipidemia; Myocardium; DNA microarray; Heart; GO analysis
9.  Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila 
Autophagy  2012;8(7):1124-1135.
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
PMCID: PMC3429548  PMID: 22562043
antimicrobial peptides; Atg8; autophagy; Drosophila; fat body; glycogen; GSK-3B; microarray; Rack1; starvation
10.  MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes 
Polyunsaturated fatty acids (PUFAs) such as γ-linolenic acid (GLA), arachidonic acid (AA) and docosahexaenoic acid (DHA) have cytotoxic action on glioma cells.
We evaluated the cytotoxic action of GLA, AA and DHA on glioma cells with specific reference to the expression of miRNAs. Relative expression of miRNAs were assessed by using high throughput nanocapillary real-time PCR. Most of the miRNA target genes that showed altered expression could be classified as apoptotic genes and were up-regulated by PUFA or temozolomide treatment, while similar treatments resulted in repression of the corresponding mRNAs, such as cox2, irs1, irs2, ccnd1, itgb3, bcl2, sirt1, tp53inp1 and k-ras.
Our results highlight involvement of miRNAs in the induction of apoptosis in glioma cells by fatty acids and temozolomide.
PMCID: PMC3203338  PMID: 21961478
PUFA; micro RNA; glioblastoma; apoptosis
11.  Evolutionarily Conserved, Growth Plate Zone-Specific Regulation of the Matrilin-1 Promoter: L-Sox5/Sox6 and Nfi Factors Bound near TATA Finely Tune Activation by Sox9 ▿  
Molecular and Cellular Biology  2010;31(4):686-699.
To help uncover the mechanisms underlying the staggered expression of cartilage-specific genes in the growth plate, we dissected the transcriptional mechanisms driving expression of the matrilin-1 gene (Matn1). We show that a unique assembly of evolutionarily conserved cis-acting elements in the Matn1 proximal promoter restricts expression to the proliferative and prehypertrophic zones of the growth plate. These elements functionally interact with distal elements and likewise are capable of restricting the domain of activity of a pancartilaginous Col2a1 enhancer. The proximal elements include a Pe1 element binding the chondrogenic L-Sox5, Sox6, and Sox9 proteins, a SI element binding Nfi proteins, and an initiator Ine element binding the Sox trio and other factors. Sox9 binding to Pe1 is indispensable for functional interaction with the distal promoter. Binding of L-Sox5/Sox6 to Ine and Nfib to SI modulates Sox9 transactivation in a protein dose-dependent manner, possibly to enhance Sox9 activity in early stages of chondrogenesis and repress it at later stages. Hence, our data suggest a novel model whereby Sox and Nfi proteins bind to conserved Matn1 proximal elements and functionally interact with each other to finely tune gene expression in specific zones of the cartilage growth plate.
PMCID: PMC3028657  PMID: 21173167
12.  Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells 
Cytoplasmic lipid-droplets are common inclusions of eukaryotic cells. Lipid-droplet binding thalidomide analogs (2,6-dialkylphenyl-4/5-amino-substituted-5,6,7-trifluorophthalimides) with potent anticancer activities were synthesized.
Cytotoxicity was detected in different cell lines including melanoma, leukemia, hepatocellular carcinoma, glioblastoma at micromolar concentrations. The synthesized analogs are non-toxic to adult animals up to 1 g/kg but are teratogenic to zebrafish embryos at micromolar concentrations with defects in the developing muscle. Treatment of tumor cells resulted in calcium release from the endoplasmic reticulum (ER), induction of reactive oxygen species (ROS), ER stress and cell death. Antioxidants could partially, while an intracellular calcium chelator almost completely diminish ROS production. Exogenous docosahexaenoic acid or eicosapentaenoic acid induced calcium release and ROS generation, and synergized with the analogs in vitro, while oleic acid had no such an effect. Gene expression analysis confirmed the induction of ER stress-mediated apoptosis pathway components, such as GADD153, ATF3, Luman/CREB3 and the ER-associated degradation-related HERPUD1 genes. Tumor suppressors, P53, LATS2 and ING3 were also up-regulated in various cell lines after drug treatment. Amino-phthalimides down-regulated the expression of CCL2, which is implicated in tumor metastasis and angiogenesis.
Because of the anticancer, anti-angiogenic action and the wide range of applicability of the immunomodulatory drugs, including thalidomide analogs, lipid droplet-binding members of this family could represent a new class of agents by affecting ER-membrane integrity and perturbations of ER homeostasis.
PMCID: PMC2902471  PMID: 20525221
13.  Transgenic fat-1 mouse as a model to study the pathophysiology of cardiovascular, neurological and psychiatric disorders 
Polyunsaturated fatty acids (PUFAs) form an important constituent of all the cell membranes in the body. PUFAs such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) form precursors to both pro-inflammatory and anti-inflammatory compounds. Low-grade systemic inflammation occurs in clinical conditions such as insulin resistance, hypertension, type 2 diabetes mellitus, atherosclerosis, coronary heart disease, lupus, schizophrenia, Alzheimer's disease, and other dementias, cancer and non-alcoholic fatty liver disease (NAFLD) that are also characterized by an alteration in the metabolism of essential fatty acids in the form of excess production of pro-inflammatory eicosanoids and possibly, decreased synthesis and release of anti-inflammatory lipoxins, resolvins, protectins and maresins. We propose that low-grade systemic inflammation observed in these clinical conditions is due to an imbalance in the metabolism of essential fatty acids that is more in favour of pro-inflammatory molecules. In this context, transgenic fat-1 mouse that is designed to convert n-6 to n-3 fatty acids could form an ideal model to study the altered metabolism of essential fatty acids in the above mentioned conditions. It is envisaged that low-grade systemic inflammatory conditions are much less likely in the fat-1 mouse and/or these diseases will run a relatively mild course. Identifying the anti-inflammatory compounds from n-3 fatty acids that suppress low-grade systemic inflammatory conditions and understanding their mechanism(s) of action may lead to newer therapeutic strategies.
PMCID: PMC2811702  PMID: 20042103
14.  Gene Expression Profiling Identifies FKBP39 as an Inhibitor of Autophagy in Larval Drosophila Fat Body 
Cell death and differentiation  2007;14(6):1181-1190.
In Drosophila, the fat body undergoes a massive burst of autophagy at the end of larval development in preparation for the pupal transition. To identify genes involved in this process, we carried out a microarray analysis. We found that mRNA levels of the homologs of Atg8, the coat protein of early autophagic structures, and lysosomal hydrolases were upregulated, consistent with previous results. Genes encoding mitochondrial proteins and many chaperones were downregulated, including the inhibitor of eIF2alpha kinases and the peptidyl-prolyl cis-trans isomerase (PPiase) FKBP39. Genetic manipulation of FKBP39 expression had a significant effect on autophagy, potentially through modulation of the transcription factor Foxo. Accordingly, we found that Foxo mutants can not properly undergo autophagy in response to starvation, and that overexpression of Foxo induces autophagy.
PMCID: PMC2084463  PMID: 17363962
autophagy; Drosophila; FKBP39; Foxo; microarray
15.  Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers 
Disease Markers  2005;21(2):61-69.
Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL) express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3) was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2) and the inwardly rectifying potassium channel (Kir2.3) were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR) using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.
PMCID: PMC3851074  PMID: 15920292
schizophrenia; lymphocyte; dopamine receptor D2 (DRD2); inwardly rectifying potassium channel (Kir2.3); microarray; real-time PCR

Results 1-15 (15)