PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization 
PLoS Pathogens  2015;11(1):e1004597.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5′ to 3′ decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion.
Author Summary
We have only scratched the surface in understanding how viruses control host gene expression. Several viruses disrupt important sites of post-transcriptional control of gene expression known as processing bodies (PBs), but underlying regulatory mechanisms and biological relevance remain poorly understood in most cases. Our study shows that the Kaposin B (KapB) protein of Kaposi's sarcoma (KS)-associated herpesvirus, known to block the degradation of a class of labile host mRNAs, does so by constitutively activating a signaling axis involving MK2, hsp27, p115RhoGEF and RhoA, thereby dispersing PBs. Thus, PB disruption may support the secretion of host pro-inflammatory cytokines and angiogenic factors that underlies KS tumor formation. Furthermore, by activating RhoA, KapB also causes cytoskeletal rearrangements, accelerated cell migration and angiogenesis in an endothelial cell model. Our findings position KapB as a key contributor to viral reprogramming of endothelial cells.
doi:10.1371/journal.ppat.1004597
PMCID: PMC4287613  PMID: 25569678
2.  1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection 
Viruses  2014;6(9):3500-3513.
In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.
doi:10.3390/v6093500
PMCID: PMC4189036  PMID: 25256393
stress granules; p-bodies; viruses; cancer; neurological disorders
3.  Structure of an SspH1-PKN1 Complex Reveals the Basis for Host Substrate Recognition and Mechanism of Activation for a Bacterial E3 Ubiquitin Ligase 
Molecular and Cellular Biology  2014;34(3):362-373.
IpaH proteins are bacterium-specific E3 enzymes that function as type three secretion system (T3SS) effectors in Salmonella, Shigella, and other Gram-negative bacteria. IpaH enzymes recruit host substrates for ubiquitination via a leucine-rich repeat (LRR) domain, which can inhibit the catalytic domain in the absence of substrate. The basis for substrate recognition and the alleviation of autoinhibition upon substrate binding is unknown. Here, we report the X-ray structure of Salmonella SspH1 in complex with human PKN1. The LRR domain of SspH1 interacts specifically with the HR1b coiled-coil subdomain of PKN1 in a manner that sterically displaces the catalytic domain from the LRR domain, thereby activating catalytic function. SspH1 catalyzes the ubiquitination and proteasome-dependent degradation of PKN1 in cells, which attenuates androgen receptor responsiveness but not NF-κB activity. These regulatory features are conserved in other IpaH-substrate interactions. Our results explain the mechanism whereby substrate recognition and enzyme autoregulation are coupled in this class of bacterial ubiquitin ligases.
doi:10.1128/MCB.01360-13
PMCID: PMC3911519  PMID: 24248594
4.  Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest 
PLoS Pathogens  2014;10(7):e1004217.
Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.
Author Summary
Like all viruses, Influenza A virus (IAV) is absolutely dependent on host-cell protein synthesis machinery. This dependence makes the virus vulnerable to the innate ability of cells to inhibit protein synthesis in response to various types of stress. This inhibition, termed translation arrest, helps cells survive adverse conditions by re-dedicating their energy to stress responses. When cells arrest translation, they form stress granules: depots of untranslated mRNAs and associated proteins. Translation arrest and formation of stress granules can be induced pharmacologically, and in this work we sought to determine whether stress granule induction would be effective in blocking IAV replication. Here we demonstrate that treatment of cells with inducers of stress granules at early times after infection resulted in blockade of viral protein synthesis and stopped viral replication. At later times post-infection, by contrast, IAV proteins prevented pharmacological induction of stress granules. We identified three viral proteins – more than in any virus to date – that work in concert to prevent stress granule formation. Taken together, our studies reveal a multipronged approach for viral suppression of translation arrest, and identify a window of opportunity early in infection when pharmacological induction of stress granules has a strong antiviral effect.
doi:10.1371/journal.ppat.1004217
PMCID: PMC4092144  PMID: 25010204
5.  The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections 
Autophagy  2014;10(3):538-547.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), a channel that normally transports anions across epithelial cell membranes. The most common manifestation of CF is buildup of mucus in the airways and bacterial colonization of the lower respiratory tract, accompanied by chronic inflammation. Antibiotics are used to control CF-associated opportunistic infections, but lengthy antibiotic treatment risks the emergence of multiple-drug resistant (MDR) strains. New antimicrobial strategies are needed to prevent and treat infections in these high-risk individuals. Autophagy contributes to the control of a variety of microbial infections. For this reason, the recent discovery of functional impairment of autophagy in CF provides a new basis for understanding susceptibility to severe infections. Here, we review the role of autophagy in host defense against CF-associated bacterial and fungal pathogens, and survey pharmacologic approaches to restore normal autophagy function in these individuals. Autophagy restoration therapy may improve pathogen clearance and mitigate lung inflammation in CF airways.
doi:10.4161/auto.27750
PMCID: PMC4077897  PMID: 24434788
autophagy; cystic fibrosis; rapamycin; BECN1; TGM2; P. aeruginosa; B. cepacia; H. influenza; non-tuberculosis mycobacterium; A. fumigatus; S. aureus
6.  Autophagy Enhances Bacterial Clearance during P. aeruginosa Lung Infection 
PLoS ONE  2013;8(8):e72263.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.
doi:10.1371/journal.pone.0072263
PMCID: PMC3756076  PMID: 24015228
7.  Kaposi's Sarcoma-Associated Herpesvirus G-Protein-Coupled Receptor Prevents AU-Rich-Element-Mediated mRNA Decay 
Journal of Virology  2012;86(16):8859-8871.
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, host gene expression is severely restricted by a process of global mRNA degradation known as host shutoff, which rededicates translational machinery to the expression of viral proteins. A subset of host mRNAs is spared from shutoff, and a number of these contain cis-acting AU-rich elements (AREs) in their 3′ untranslated regions. AREs are found in labile mRNAs encoding cytokines, growth factors, and proto-oncogenes. Activation of the p38/MK2 signal transduction pathway reverses constitutive decay of ARE-mRNAs, resulting in increased protein production. The viral G-protein-coupled receptor (vGPCR) is thought to play an important role in promoting the secretion of angiogenic molecules from KSHV-infected cells during lytic replication, but to date it has not been clear how vGPCR circumvents host shutoff. Here, we demonstrate that vGPCR activates the p38/MK2 pathway and stabilizes ARE-mRNAs, augmenting the levels of their protein products. Using MK2-deficient cells, we demonstrate that MK2 is essential for maximal vGPCR-mediated ARE-mRNA stabilization. ARE-mRNAs are normally delivered to cytoplasmic ribonucleoprotein granules known as processing bodies (PBs) for translational silencing and decay. We demonstrate that PB formation is prevented during KSHV lytic replication or in response to vGPCR-mediated activation of RhoA subfamily GTPases. Together, these data show for the first time that vGPCR impacts gene expression at the posttranscriptional level, coordinating an attack on the host mRNA degradation machinery. By suppressing ARE-mRNA turnover, vGPCR may facilitate escape of certain target mRNAs from host shutoff and allow secretion of angiogenic factors from lytically infected cells.
doi:10.1128/JVI.00597-12
PMCID: PMC3421767  PMID: 22696654
8.  Viral subversion of autophagy impairs oncogene-induced senescence 
Autophagy  2012;8(7):1138-1140.
Many viruses have evolved elegant strategies to co-opt cellular autophagic responses to facilitate viral propagation and evasion of immune surveillance. Kaposi’s sarcoma-associated herpesvirus (KSHV) establishes a life-long persistent infection in its human host, and is etiologically linked to several cancers. KSHV gene products have been shown to modulate autophagy but their contribution to pathogenesis remains unclear. Our recent study demonstrated that KSHV subversion of autophagy promotes bypass of oncogene-induced senescence (OIS), an important host barrier to tumor initiation. These findings suggest that KSHV has evolved to subvert autophagy, at least in part, to establish an optimal niche for infection, concurrently dampening host antiviral defenses and allowing the ongoing proliferation of infected cells.
doi:10.4161/auto.20340
PMCID: PMC3429550  PMID: 22735194
KSHV; oncogene; DNA damage; autophagy; oncogene-induced senescence
10.  Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions To Inhibit Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread▿ 
Journal of Virology  2011;85(9):4386-4398.
Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues.
doi:10.1128/JVI.01492-10
PMCID: PMC3126266  PMID: 21307190
11.  Phosphorylation and Function of the Kaposin B Direct Repeats of Kaposi's Sarcoma-Associated Herpesvirus 
Journal of Virology  2006;80(12):6165-6170.
Kaposi's sarcoma-associated herpesvirus encodes a protein, kaposin B, which is composed of multiple copies of 23-amino-acid direct repeats, termed DR2 and DR1. Kaposin B enhances the release of pathogenetically important proinflammatory cytokines by activating the p38 mitogen-activated protein kinase (MAPK)-MK2 kinase pathway and blocking cytokine mRNA decay. Here, we show that this mRNA stabilization function requires both the DR2 and DR1 elements of kaposin B; a monomeric form of the protein consisting of one copy of each repeat retains function. Furthermore, we show that p38 MAPK is capable of directly phosphorylating kaposin B in vitro and map the site of phosphorylation to a specific serine residue in DR1. Mutational ablation of this serine abolishes phosphorylation of the protein by p38 MAPK but does not affect kaposin B's ability to extend mRNA half-life.
doi:10.1128/JVI.02331-05
PMCID: PMC1472581  PMID: 16731955

Results 1-12 (12)