Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Hypoxia Inducible Factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency 
Cell stem cell  2014;14(5):592-605.
Pluripotent stem cells have distinct metabolic requirements, and reprogramming cells to pluripotency requires a shift from oxidative to glycolytic metabolism. Here, we show that this shift occurs early during reprogramming of human cells and requires Hypoxia Inducible Factors in a stage-specific manner. HIF1α and HIF2α are both necessary to initiate this metabolic switch and for acquisition of pluripotency, and stabilization of either protein during early phases of reprogramming is sufficient to induce the switch to glycolytic metabolism. In contrast, stabilization of HIF2α during later stages represses reprogramming, due at least in part to up-regulation of TNF-related apoptosis-inducing ligand (TRAIL). TRAIL inhibits iPSC generation by repressing apoptotic caspase 3 activity specifically in cells undergoing reprogramming, but not hESCs, and inhibiting TRAIL activity enhances hiPSC generation. These results shed light on the mechanisms underlying the metabolic shifts associated with acquisition of a pluripotent identity during reprogramming.
PMCID: PMC4028142  PMID: 24656769
2.  Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery 
Stem cell research  2013;12(2):467-480.
The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs) have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD). Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs). USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.
PMCID: PMC3966181  PMID: 24434629
Nuclear reprogramming; Induced pluripotent stem cells; Myocytes; Cardiac; Muscular Dystrophy; Duchenne; Cell differentiation
3.  Hypoxia induces re-entry of committed cells into pluripotency 
Stem cells (Dayton, Ohio)  2013;31(9):1737-1748.
Adult stem cells reside in hypoxic niches and embryonic stem cells (ESCs) are derived from a low oxygen environment. However, it is not clear whether hypoxia is critical for stem cell fate since for example human ESCs (hESCs) are able to self-renew in atmospheric oxygen concentrations as well. We now show that hypoxia can govern cell fate decision since hypoxia alone can revert hESC- or iPSC-derived differentiated cells back to a stem cell-like state, as evidenced by re-activation of an Oct4-promoter reporter. Hypoxia-induced “de-differentiated” cells also mimic hESCs in their morphology, long-term self-renewal capacity, genome wide mRNA and miRNA profiles, Oct4 promoter methylation state, cell surface markers TRA1-60 and SSEA4 expression and capacity to form teratomas. These data demonstrate that hypoxia can influence cell fate decisions and could elucidate hypoxic niche function.
PMCID: PMC3921075  PMID: 23765801
hESC; hypoxia; stem cell fate; plasticity
4.  Regulation of Stem Cell Populations by microRNAs 
miRNAs are small non-coding RNAs that have emerged as crucial post-transcriptional regulators of gene expression. They are key players in various critical cellular processes such as proliferation, cell cycle progression, apoptosis and differentiation. Self-renewal capacity and differentiation potential are hallmarks of stem cells. The switch between self-renewal and differentiation requires rapid widespread changes in gene expression. Since miRNAs can repress the translation of many mRNA targets, they are good candidates to regulate cell fates. In the past few years, miRNAs have appeared as important new actors in stem cell development by regulating differentiation and maintenance of stem cells. In this chapter we will focus on the role of miRNAs in various stem cell populations. After an introduction on microRNA biogenesis, we will review the recent knowledge on miRNA expression and function in pluripotent cells and during the acquisition of stem cell fate. We will then brie fly examine the role of miRNAs in adult and cancer stem cells.
PMCID: PMC3901537  PMID: 23696365
miRNA; Embryonic stem cells; Reprogramming; Adult stem cells; Cancer stem cells
5.  ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells 
Autophagy  2011;7(10):1108-1114.
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL's hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.
PMCID: PMC3242613  PMID: 21691148
APL; Beclin 1; apoptosis; ATRA; autophagy; differentiation
6.  HIF induces human embryonic stem cell markers in cancer cells 
Cancer research  2011;71(13):4640-4652.
Low oxygen levels have shown to promote self-renewal in many stem cells. In tumors, hypoxia is associated with aggressive disease course and poor clinical outcomes. Furthermore, many aggressive tumors have shown to display gene expression signatures characteristic of human embryonic stem cells (hESC). We now tested whether hypoxia might be responsible for the hESC signature observed in aggressive tumors. We show that hypoxia, through hypoxia inducible factor (HIF), can induce a hESC-like transcriptional program, including the iPSC inducers, OCT4, NANOG, SOX2, KLF4, cMYC and miRNA-302 in eleven cancer cell lines (from prostate, brain, kidney, cervix, lung, colon, liver and breast tumors). Further, non-degradable forms of HIFα, combined with the traditional iPSC inducers are highly efficient in generating A549 iPSC-like colonies that have high tumorigenic capacity. To test potential correlation between iPSC inducers and HIF expression in primary tumors, we analyzed primary prostate tumors and found a significant correlation between NANOG-, OCT4- and HIF1α-positive regions. Further, NANOG and OCT4 expression positively correlated with increased prostate tumor Gleason score. In primary glioma-derived CD133 negative cells neurospheres and hESC markers were induced in hypoxia but not in normoxia. Together, these findings suggest that HIF targets may act as key inducers of a dynamic state of stemness in pathological conditions.
PMCID: PMC3129496  PMID: 21712410
cancer; hESC; HIF; hypoxia; stemness
7.  Hyperforin Inhibits Akt1 Kinase Activity and Promotes Caspase-Mediated Apoptosis Involving Bad and Noxa Activation in Human Myeloid Tumor Cells 
PLoS ONE  2011;6(10):e25963.
The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML) cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo.
Methodology and Results
HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60) by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser473) and Akt1 substrate Bad (at Ser136) which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells.
Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.
PMCID: PMC3188562  PMID: 21998731
8.  Characterization of microRNAs Involved in Embryonic Stem Cell States 
Stem Cells and Development  2010;19(7):935-950.
Studies of embryonic stem cells (ESCs) reveal that these cell lines can be derived from differing stages of embryonic development. We analyzed common changes in the expression of microRNAs (miRNAs) and mRNAs in 9 different human ESC (hESC) lines during early commitment and further examined the expression of key ESC-enriched miRNAs in earlier developmental states in several species. We show that several previously defined hESC-enriched miRNA groups (the miR-302, −17, and −515 families, and the miR-371–373 cluster) and several other hESC-enriched miRNAs are down-regulated rapidly in response to differentiation. We further found that mRNAs up-regulated upon differentiation are enriched in potential target sites for these hESC-enriched miRNAs. Interestingly, we also observed that the expression of ESC-enriched miRNAs bearing identical seed sequences changed dynamically while the cells transitioned through early embryonic states. In human and monkey ESCs, as well as human-induced pluripotent stem cells (iPSCs), the miR-371–373 cluster was consistently up-regulated, while the miR-302 family was mildly down-regulated when the cells were chemically treated to regress to an earlier developmental state. Similarly, miR-302b, but not mmu-miR-295, was expressed at higher levels in murine epiblast stem cells (mEpiSC) as compared with an earlier developmental state, mouse ESCs. These results raise the possibility that the relative expression of related miRNAs might serve as diagnostic indicators in defining the developmental state of embryonic cells and other stem cell lines, such as iPSCs. These data also raise the possibility that miRNAs bearing identical seed sequences could have specific functions during separable stages of early embryonic development.
PMCID: PMC3128320  PMID: 20128659
9.  microRNAs regulate human embryonic stem cell division 
Cell cycle (Georgetown, Tex.)  2009;8(22):3729-3741.
microRNAs (miRNAs) regulate numerous physiological processes such as cell division and differentiation in many tissue types including stem cells. To probe the role that miRNAs play in regulating processes relevant to embryonic stem cell biology, we used RNA interference to silence DICER and DROSHA, the two main miRNA processing enzymes. Consistent with a role for miRNAs in maintaining normal stem cell division and renewal, we found that perturbation of miRNA pathway function in human embryonic stem cells (hESCs) attenuates cell proliferation. Normal cell growth can be partially restored by introduction of the mature miRNAs miR-195 and miR-372. These miRNAs regulate two tumor suppressor genes, respectively: WEE1, which encodes a negative G2/M kinase modulator of the CycB/CDK complex and CDKN1A, which encodes p21, a CycE/CDK cyclin dependent kinase inhibitor that regulates the G1/S transition. We show that in wild-type hESCs, WEE1 levels control the rate of heSC division, whereas p21 levels must be maintained at a low level for hESC division to proceed. These data support a model for hESC cell cycle control in which miRNAs regulate negative cell cycle modulators at two phases of the cell cycle to ensure proper replenishment of the stem cell population.
PMCID: PMC2925126  PMID: 19823043
microRNAs; cell cycle; human embryonic stem cells; cell division; CDKN1A/p21; WEE1

Results 1-9 (9)