PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Trs130 participates in autophagy through GTPases Ypt31/32 in Saccharomyces cerevisiae 
Traffic (Copenhagen, Denmark)  2012;14(2):233-246.
Trs130 is a specific component of the TRAPP II (Transport protein particle II) complex, which functions as a guanine exchange factor (GEF) for Rab GTPases Ypt31/32. Ypt31/32 is known to be involved in autophagy, although the precise mechanism has not been thoroughly studied. In this study, we investigated the potential involvement of Trs130 in autophagy and found that both the cytoplasm-to-vacuole targeting (Cvt) pathway and starvation-induced autophagy were defective in a trs130ts (trs130 temperature-sensitive) mutant. Mutant cells could not transport Atg8 and Atg9 to the preautophagosomal structure/ phagophore assembly site (PAS) properly, resulting in multiple Atg8 dots and Atg9 dots dispersed in the cytoplasm. Some dots were trapped in the trans-Golgi. Genetic studies showed that the effect of the Trs130 mutation was downstream of Atg5 and upstream of Atg1, Atg13, Atg9 and Atg14 on the autophagic pathway. Furthermore, overexpression of Ypt31 or Ypt32, but not of Ypt1, rescued autophagy defects in trs130ts and trs65ts (Trs130-HA Trs120-myc trs65Δ) mutants. Our data provide mechanistic insight into how Trs130 participates in autophagy and suggest that vesicular trafficking regulated by GTPases/GEFs is important in the transport of autophagy proteins from the trans-Golgi to the PAS.
doi:10.1111/tra.12024
PMCID: PMC3538905  PMID: 23078654
TRAPP II; GEF complex; Ypt31/32; Rab GTPases; autophagy
2.  Dual roles of Atg8−PE deconjugation by Atg4 in autophagy 
Autophagy  2012;8(6):883-892.
Modification of target molecules by ubiquitin or ubiquitin-like (Ubl) proteins is generally reversible. Little is known, however, about the physiological function of the reverse reaction, deconjugation. Atg8 is a unique Ubl protein whose conjugation target is the lipid phosphatidylethanolamine (PE). Atg8 functions in the formation of double-membrane autophagosomes, a central step in the well-conserved intracellular degradation pathway of macroautophagy (hereafter autophagy). Here we show that the deconjugation of Atg8−PE by the cysteine protease Atg4 plays dual roles in the formation of autophagosomes. During the early stage of autophagosome formation, deconjugation releases Atg8 from non-autophagosomal membranes to maintain a proper supply of Atg8. At a later stage, the release of Atg8 from intermediate autophagosomal membranes facilitates the maturation of these structures into fusion-capable autophagosomes. These results provide new insights into the functions of Atg8−PE and its deconjugation.
doi:10.4161/auto.19652
PMCID: PMC3427254  PMID: 22652539
autophagy; ubiquitin-like proteins; deconjugation; Atg4; Atg8
3.  TRAPPII Complex Assembly Requires Trs33 or Trs65 
Traffic (Copenhagen, Denmark)  2009;10(12):1831-1844.
TRAPP is a multi-subunit complex that acts as a Ypt/Rab activator at the Golgi apparatus. TRAPP exists in two forms: TRAPP I is comprised of five essential and conserved subunits and TRAPP II contains two additional essential and conserved subunits, Trs120 and Trs130. Previously, we have shown that Trs65, a nonessential fungi-specific TRAPP subunit, plays a role in TRAPP II assembly. TRS33 encodes another nonessential but conserved TRAPP subunit whose function is not known. Here, we show that one of these two subunits, nonessential individually, is required for TRAPP II assembly. Trs33 and Trs65 share sequence, intra-cellular localization and interaction similarities. Specifically, Trs33 interacts genetically with both Trs120 and Trs130 and physically with Trs120. In addition, trs33 mutant cells contain lower levels of TRAPP II and exhibit aberrant localization of the Golgi Ypts. Together, our results indicate that in yeast, TRAPP II assembly is an essential process that can be accomplished by either of two related TRAPP subunits. Moreover, because humans express two Trs33 homologues, we propose that the requirement of Trs33 for TRAPP II assembly is conserved from yeast to humans.
doi:10.1111/j.1600-0854.2009.00988.x
PMCID: PMC2794200  PMID: 19843283
4.  The Role of Trs65 in the Ypt/Rab Guanine Nucleotide Exchange Factor Function of the TRAPP II Complex 
Molecular Biology of the Cell  2007;18(7):2533-2541.
The conserved modular complex TRAPP is a guanine nucleotide exchanger (GEF) for the yeast Golgi Ypt-GTPase gatekeepers. TRAPP I and TRAPP II share seven subunits and act as GEFs for Ypt1 and Ypt31/32, respectively, which in turn regulate transport into and out of the Golgi. Trs65/Kre11 is one of three TRAPP II-specific subunits. Unlike the other two subunits, Trs120 and Trs130, Trs65 is not essential for viability, is conserved only among some fungi, and its contribution to TRAPP II function is unclear. Here, we provide genetic, biochemical, and cellular evidence for the role of Trs65 in TRAPP II function. First, like Trs130, Trs65 localizes to the trans-Golgi. Second, TRS65 interacts genetically with TRS120 and TRS130. Third, Trs65 interacts physically with Trs120 and Trs130. Finally, trs65 mutant cells have low levels of Trs130 protein, and they are defective in the GEF activity of TRAPP II and the intracellular distribution of Ypt1 and Ypt31/32. Together, these results show that Trs65 plays a role in the Ypt GEF activity of TRAPP II in concert with the two other TRAPP II-specific subunits. Elucidation of the role played by Trs65 in intracellular trafficking is important for understanding how this process is coordinated with two other processes in which Trs65 is implicated: cell wall biogenesis and stress response.
doi:10.1091/mbc.E07-03-0221
PMCID: PMC1924837  PMID: 17475775

Results 1-4 (4)