PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  CERKL, a Retinal Disease Gene, Encodes an mRNA-Binding Protein That Localizes in Compact and Untranslated mRNPs Associated with Microtubules 
PLoS ONE  2014;9(2):e87898.
The function of CERKL (CERamide Kinase Like), a causative gene of retinitis pigmentosa and cone-rod dystrophy, still awaits characterization. To approach its cellular role we have investigated the subcellular localization and interaction partners of the full length CERKL isoform, CERKLa of 532 amino acids, in different cell lines, including a photoreceptor-derived cell line. We demonstrate that CERKLa is a main component of compact and untranslated mRNPs and that associates with other RNP complexes such as stress granules, P-bodies and polysomes. CERKLa is a protein that binds through its N-terminus to mRNAs and interacts with other mRNA-binding proteins like eIF3B, PABP, HSP70 and RPS3. Except for eIF3B, these interactions depend on the integrity of mRNAs but not of ribosomes. Interestingly, the C125W CERKLa pathological mutant does not interact with eIF3B and is absent from these complexes. Compact mRNPs containing CERKLa also associate with microtubules and are found in neurites of neural differentiated cells. These localizations had not been reported previously for any member of the retinal disorders gene family and should be considered when investigating the pathogenic mechanisms and therapeutical approaches in these diseases.
doi:10.1371/journal.pone.0087898
PMCID: PMC3912138  PMID: 24498393
2.  PTEN Increases Autophagy and Inhibits the Ubiquitin-Proteasome Pathway in Glioma Cells Independently of its Lipid Phosphatase Activity 
PLoS ONE  2013;8(12):e83318.
Two major mechanisms of intracellular protein degradation, autophagy and the ubiquitin-proteasome pathway, operate in mammalian cells. PTEN, which is frequently mutated in glioblastomas, is a tumor suppressor gene that encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase class I/AKT/mTOR pathway, which is a key regulator of autophagy. Here, we investigated in U87MG human glioma cells the role of PTEN in the regulation of autophagy and the ubiquitin-proteasome pathway, because both are functionally linked and are relevant in cancer progression. Since U87MG glioma cells lack a functional PTEN, we used stable clones that express, under the control of a tetracycline-inducible system (Tet-on), wild-type PTEN and two of its mutants, G129E-PTEN and C124S-PTEN, which, respectively, lack the lipid phosphatase activity only and both the lipid and the protein phosphatase activities of this protein. Expression of PTEN in U87MG glioma cells decreased proteasome activity and also reduced protein ubiquitination. On the contrary, expression of PTEN increased the autophagic flux and the lysosomal mass. Interestingly, and although PTEN negatively regulates the phosphatidylinositol 3-kinase class I/AKT/mTOR signaling pathway by its lipid phosphatase activity, both effects in U87MG cells were independent of this activity. These results suggest a new mTOR-independent signaling pathway by which PTEN can regulate in opposite directions the main mechanisms of intracellular protein degradation.
doi:10.1371/journal.pone.0083318
PMCID: PMC3862694  PMID: 24349488
3.  Erratum to 
Autophagy  2012;8(7):1163.
doi:10.4161/auto.21428
PMCID: PMC3429560
Lafora disease; autophagy; glycogen metabolism; laforin; malin; neurodegeneration
4.  Alterations in ROS Activity and Lysosomal pH Account for Distinct Patterns of Macroautophagy in LINCL and JNCL Fibroblasts 
PLoS ONE  2013;8(2):e55526.
Neuronal Ceroid Lipofuscinoses (NCL) are lysosomal storage disorders characterized by the accumulation of lipofuscin within lysosomes. Late infantile (LINCL) and juvenile (JNCL) are their most common forms and are caused by loss-of-function mutations in tripeptidyl peptidase 1 (TPP1), a lysosomal endopeptidase, and CLN3 protein (CLN3p), whose location and function is still controversial. LINCL patients suffer more severely from NCL consequences than JNCL patients, in spite of having in common an abnormal accumulation of material with a similar composition in the lysosomes. To identify distinctive characteristics that could explain the differences in the severity of LINCL and JNCL pathologies, we compared the protein degradation mechanisms in patientś fibroblasts. Pulse-chase experiments show a significant decrease in protein degradation by macroautophagy in fibroblasts bearing TPP1 (CLN2) and CLN3p (CLN3) mutations. In CLN2 fibroblasts, LC3-II levels and other procedures indicate an impaired formation of autophagosomes, which confirms the pulse-chase experiments. This defect is linked to an accumulation of Reactive Oxygen Species (ROS), an upregulation of the Akt-mTOR signalling pathway and increased activities of the p38α and ERK1/2 MAPKs. In CLN3 fibroblasts, LC3-II analysis indicates impairment in autophagosome maturation and there is also a defect in fluid phase endocytosis, two alterations that can be related to an observed increase of 0.5 units in lysosomal pH. CLN3 fibroblasts also accumulate ROS but to a lower extent than CLN2. TPP1 activity is completely abrogated in CLN2 and partially diminished in CLN3 fibroblasts. TPP1 cleaves small hydrophobic proteins like subunit c of mitochondrial ATP synthase and the lack or a lower activity of this enzyme can contribute to lipofuscin accumulation. These alterations in TPP1 activity lead to an increased ROS production, especially in CLN2 in which it is aggravated by a decrease in catalase activity. This could explain the earlier appearance of the symptoms in the LINCL form.
doi:10.1371/journal.pone.0055526
PMCID: PMC3567113  PMID: 23408996
5.  Regulation of Autophagy by Glucose in Mammalian Cells 
Cells  2012;1(3):372-395.
Autophagy is an evolutionarily conserved process that contributes to maintain cell homeostasis. Although it is strongly regulated by many extracellular factors, induction of autophagy is mainly produced by starvation of nutrients. In mammalian cells, the regulation of autophagy by amino acids, and also by the hormone insulin, has been extensively investigated, but knowledge about the effects of other autophagy regulators, including another nutrient, glucose, is more limited. Here we will focus on the signalling pathways by which environmental glucose directly, i.e., independently of insulin and glucagon, regulates autophagy in mammalian cells, but we will also briefly mention some data in yeast. Although glucose deprivation mainly induces autophagy via AMPK activation and the subsequent inhibition of mTORC1, we will also comment other signalling pathways, as well as evidences indicating that, under certain conditions, autophagy can be activated by glucose. A better understanding on how glucose regulates autophagy not only will expand our basic knowledge of this important cell process, but it will be also relevant to understand common human disorders, such as cancer and diabetes, in which glucose levels play an important role.
doi:10.3390/cells1030372
PMCID: PMC3901114  PMID: 24710481
autophagy; regulation; nutrients; energy; glucose; AMPK
6.  New Ca2+-dependent regulators of autophagosome maturation 
Autophagy is a membrane trafficking pathway responsible for the breakdown of unwanted intracellular materials and crucial for the cell healthiness and survival. In the autophagic flux, various dynamic membrane rearrangements occurs starting with the elongation of the phagophore and its closure to build an autophagosome and ending with its fusion with late endosomes and lysosomes to form an autolysosome. Although Ca2+ is a well established regulator of membrane fusion events, little is known about its role in these processes during autophagy. Recent studies, based on proteomic analyses of lysosomal membranes, have provided new insights into this field of study. Thus, the levels on lysosomal membranes of annexin A1, annexin A5 and copine 1, three proteins that bind to phospholipid membranes in a Ca2+-dependent manner, increased under nutrient deprivation, a condition that promotes autophagic degradation. In addition, two different studies showed that annexin A5 and annexin A1 are involved in autophagosome maturation. Here, we discuss the molecular mechanisms by which the fusion of autophagosomes with endosomes and lysosomes could be regulated by these three proteins and Ca2+.
doi:10.4161/cib.20076
PMCID: PMC3460830  PMID: 23060949
annexin A1; annexin A5; copine 1; Ca2+; autophagosomal maturation; endosomes; lysosomes
7.  Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells 
Autophagy, the pathway whereby cell components are degraded by lysosomes, is involved in the cell response to environmental stresses, such as nutrient deprivation, hypoxia or exposition to chemotherapeutic agents. Under these conditions, which are reminiscent of certain phases of tumor development, autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy, as has been proposed. Here, we describe the regulation of survival and death by autophagy and apoptosis, especially in cultured breast cancer cells. In particular, we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.
doi:10.4331/wjbc.v2.i10.232
PMCID: PMC3202127  PMID: 22031846
Autophagy; Apoptosis; Survival; Breast cancer cells; Signaling pathways
8.  The Laforin–Malin Complex, Involved in Lafora Disease, Promotes the Incorporation of K63-linked Ubiquitin Chains into AMP-activated Protein Kinase β Subunits 
Molecular Biology of the Cell  2010;21(15):2578-2588.
A functional laforin–malin complex promotes the ubiquitination of AMP-activated protein kinase (AMPK), a sensor of cellular energy status. The laforin–malin complex promotes the formation of K63-linked ubiquitin chains, which are not involved in proteasome degradation but could regulate the subcellular localization of substrate proteins.
Lafora progressive myoclonus epilepsy is a fatal neurodegenerative disorder caused by defects in the function of at least two proteins: laforin, a dual-specificity protein phosphatase, and malin, an E3-ubiquitin ligase. In this study, we report that a functional laforin–malin complex promotes the ubiquitination of AMP-activated protein kinase (AMPK), a serine/threonine protein kinase that acts as a sensor of cellular energy status. This reaction occurs when any of the three AMPK subunits (α, β, and γ) are expressed individually in the cell, and it also occurs on AMPKβ when it is part of a heterotrimeric complex. We also report that the laforin–malin complex promotes the formation of K63-linked ubiquitin chains, which are not involved in proteasome degradation. On the contrary, this modification increases the steady-state levels of at least AMPKβ subunit, possibly because it leads to the accumulation of this protein into inclusion bodies. These results suggest that the modification introduced by the laforin–malin complex could affect the subcellular distribution of AMPKβ subunits.
doi:10.1091/mbc.E10-03-0227
PMCID: PMC2912345  PMID: 20534808
9.  Impaired autophagy in Lafora disease 
Autophagy  2010;6(7):991-993.
Lafora disease (LD) is a progressive, lethal, autosomal recessive, neurodegenerative disorder that manifests with myoclonus epilepsy. LD is characterized by the presence of intracellular inclusion bodies called Lafora bodies (LB), in brain, spinal cord and other tissues. More than 50 percent of LD is caused by mutations in EPM2A that encodes laforin. Here we review our recent findings that revealed that laforin regulates autophagy. We consider how autophagy compromise may predispose to LB formation and neurodegeneration in LD, and discuss future investigations suggested by our data.
doi:10.4161/auto.6.7.13308
PMCID: PMC3039746  PMID: 20818165
autophagy; glycogen metabolism; Lafora disease; laforin; malin; neurodegeneration
10.  Laforin, the most common protein mutated in Lafora disease, regulates autophagy 
Human Molecular Genetics  2010;19(14):2867-2876.
Lafora disease (LD) is an autosomal recessive, progressive myoclonus epilepsy, which is characterized by the accumulation of polyglucosan inclusion bodies, called Lafora bodies, in the cytoplasm of cells in the central nervous system and in many other organs. However, it is unclear at the moment whether Lafora bodies are the cause of the disease, or whether they are secondary consequences of a primary metabolic alteration. Here we describe that the major genetic lesion that causes LD, loss-of-function of the protein laforin, impairs autophagy. This phenomenon is confirmed in cell lines from human patients, mouse embryonic fibroblasts from laforin knockout mice and in tissues from such mice. Conversely, laforin expression stimulates autophagy. Laforin regulates autophagy via the mammalian target of rapamycin kinase-dependent pathway. The changes in autophagy mediated by laforin regulate the accumulation of diverse autophagy substrates and would be predicted to impact on the Lafora body accumulation and the cell stress seen in this disease that may eventually contribute to cell death.
doi:10.1093/hmg/ddq190
PMCID: PMC2893813  PMID: 20453062
11.  Characterization of Human GTPBP3, a GTP-Binding Protein Involved in Mitochondrial tRNA Modification▿ † 
Molecular and Cellular Biology  2008;28(24):7514-7531.
Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.
doi:10.1128/MCB.00946-08
PMCID: PMC2593442  PMID: 18852288
12.  Activation of Chaperone-mediated Autophagy during Oxidative StressD⃞ 
Molecular Biology of the Cell  2004;15(11):4829-4840.
Oxidatively damaged proteins accumulate with age in almost all cell types and tissues. The activity of chaperone-mediated autophagy (CMA), a selective pathway for the degradation of cytosolic proteins in lysosomes, decreases with age. We have analyzed the possible participation of CMA in the removal of oxidized proteins in rat liver and cultured mouse fibroblasts. Added to the fact that CMA substrates, when oxidized, are more efficiently internalized into lysosomes, we have found a constitutive activation of CMA during oxidative stress. Oxidation-induced activation of CMA correlates with higher levels of several components of the lysosomal translocation complex, but in particular of the lumenal chaperone, required for substrate uptake, and of the lysosomal membrane protein (lamp) type 2a, previously identified as a receptor for this pathway. In contrast with the well characterized mechanism of CMA activation during nutritional stress, which does not require de novo synthesis of the receptor, oxidation-induced activation of CMA is attained through transcriptional up-regulation of lamp2a. We conclude that CMA is activated during oxidative stress and that the higher activity of this pathway under these conditions, along with the higher susceptibility of the oxidized proteins to be taken up by lysosomes, both contribute to the efficient removal of oxidized proteins.
doi:10.1091/mbc.E04-06-0477
PMCID: PMC524731  PMID: 15331765
13.  Disturbed Cholesterol Traffic but Normal Proteolytic Function in LAMP-1/LAMP-2 Double-deficient FibroblastsD⃞ 
Molecular Biology of the Cell  2004;15(7):3132-3145.
Mice double deficient in LAMP-1 and -2 were generated. The embryos died between embryonic days 14.5 and 16.5. An accumulation of autophagic vacuoles was detected in many tissues including endothelial cells and Schwann cells. Fibroblast cell lines derived from the double-deficient embryos accumulated autophagic vacuoles and the autophagy protein LC3II after amino acid starvation. Lysosomal vesicles were larger and more peripherally distributed and showed a lower specific density in Percoll gradients in double deficient when compared with control cells. Lysosomal enzyme activities, cathepsin D processing and mannose-6-phosphate receptor expression levels were not affected by the deficiency of both LAMPs. Surprisingly, LAMP-1 and -2 deficiencies did not affect long-lived protein degradation rates, including proteolysis due to chaperone-mediated autophagy. The LAMP-1/2 double-deficient cells and, to a lesser extent, LAMP-2 single-deficient cells showed an accumulation of unesterified cholesterol in endo/lysosomal, rab7, and NPC1 positive compartments as well as reduced amounts of lipid droplets. The cholesterol accumulation in LAMP-1/2 double-deficient cells could be rescued by overexpression of murine LAMP-2a, but not by LAMP-1, highlighting the more prominent role of LAMP-2. Taken together these findings indicate partially overlapping functions for LAMP-1 and -2 in lysosome biogenesis, autophagy, and cholesterol homeostasis.
doi:10.1091/mbc.E04-02-0103
PMCID: PMC452571  PMID: 15121881
14.  Expression of the Biofilm-Associated Protein Interferes with Host Protein Receptors of Staphylococcus aureus and Alters the Infective Process  
Infection and Immunity  2002;70(6):3180-3186.
The adherence of Staphylococcus aureus to soluble proteins and extracellular-matrix components of the host is one of the key steps in the pathogenesis of staphylococcal infections. S. aureus presents a family of adhesins called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that specifically recognize host matrix components. We examined the influence of biofilm-associated protein (Bap) expression on S. aureus adherence to host proteins, epithelial cell cultures, and mammary gland sections and on colonization of the mammary gland in an in vivo infection model. Bap-positive strain V329 showed lower adherence to immobilized fibrinogen and fibronectin than isogenic Bap-deficient strain m556. Bacterial adherence to histological sections of mammary gland and bacterial internalization into 293 cells were significantly lower in the Bap-positive strains. In addition, the Bap-negative strain showed significantly higher colonization in vivo of sheep mammary glands than the Bap-positive strain. Taken together, these results strongly suggest that the expression of the Bap protein interferes with functional properties of the MSCRAMM proteins, preventing initial bacterial attachment to host tissues and cellular internalization.
doi:10.1128/IAI.70.6.3180-3186.2002
PMCID: PMC127991  PMID: 12011013
15.  Import into and Degradation of Cytosolic Proteins by Isolated Yeast Vacuoles 
Molecular Biology of the Cell  1999;10(9):2879-2889.
In eukaryotic cells, both lysosomal and nonlysosomal pathways are involved in degradation of cytosolic proteins. The physiological condition of the cell often determines the degradation pathway of a specific protein. In this article, we show that cytosolic proteins can be taken up and degraded by isolated Saccharomyces cerevisiae vacuoles. After starvation of the cells, protein uptake increases. Uptake and degradation are temperature dependent and show biphasic kinetics. Vacuolar protein import is dependent on cytosolic heat shock proteins of the hsp70 family and on protease-sensitive component(s) on the outer surface of vacuoles. Degradation of the imported cytosolic proteins depends on a functional vacuolar ATPase. We show that the cytosolic isoform of yeast glyceraldehyde-3-phosphate dehydrogenase is degraded via this pathway. This import and degradation pathway is reminiscent of the protein transport pathway from the cytosol to lysosomes of mammalian cells.
PMCID: PMC25526  PMID: 10473633
16.  Ca2+-Sensor Proteins in the Autophagic and Endocytic Traffic 
Autophagy and endocytosis are two evolutionarily conserved catabolic processes that comprise vesicle trafficking events for the clearance of the sequestered intracellular and extracellular cargo. Both start differently but end in the same compartment, the lysosome. Mounting evidences from the last years have established the involvement of proteins sensitive to intracellular Ca2+ in the control of the early autophagic steps and in the traffic of autophagic, endocytic and lysosomal vesicles. However, this knowledge is based on dispersed outcomes that do not set up a consensus model of the Ca2+-dependent control of autophagy and endocytosis. Here, we will provide a critical synopsis of insights from the last decade on the involvement of Ca2+-sensor proteins in the activation of autophagy and in fusion events of endocytic vesicles, autophagosomes and lysosomes.
doi:10.2174/13892037112139990033
PMCID: PMC3664516  PMID: 23305313
Autophagy; calcium; endocytosis; lysosomes; membrane fusion.

Results 1-16 (16)