PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Disruption of Glycerol Metabolism by RNAi Targeting of Genes Encoding Glycerol Kinase Results in a Range of Phenotype Severity in Drosophila 
PLoS ONE  2013;8(9):e71664.
In Drosophila, RNAi targeting of either dGyk or dGK can result in two alternative phenotypes: adult glycerol hypersensitivity or larval lethality. Here we compare these two phenotypes at the level of glycerol kinase (GK) phosphorylation activity, dGyk and dGK-RNA expression, and glycerol levels. We found both phenotypes exhibit reduced but similar levels of GK phosphorylation activity. Reduced RNA expression levels of dGyk and dGK corresponded with RNAi progeny that developed into glycerol hypersensitive adult flies. However, quantification of dGyk/dGK expression levels for the larval lethality phenotype revealed unexpected levels possibly due to a compensatory mechanism between dGyk and dGK or RNAi inhibition. The enzymatic role of glycerol kinase converts glycerol to glycerol 3-phosphate. As expected, elevated glycerol levels were observed in larvae that went on to develop into glycerol hypersensitive adults. Interestingly, larvae that died before eclosion revealed extremely low glycerol levels. Further characterization identified a wing phenotype that is enhanced by a dGpdh null mutation, indicating disrupted glycerol metabolism underlies the wing phenotype. In humans, glycerol kinase deficiency (GKD) exhibits a wide range of phenotypic variation with no obvious genotype-phenotype correlations. Additionally, disease severity often does not correlate with GK phosphorylation activity. It is intriguing that both human GKD patients and our GKD Drosophila model show a range of phenotype severity. Additionally, the lack of correlation between GK phosphorylation and dGyk/dGK-RNA expression with phenotypic severity suggests further study including understanding the alternative functions of the GK protein, could provide insights into the complex pathogenic mechanism observed in human GKD patients.
doi:10.1371/journal.pone.0071664
PMCID: PMC3765373  PMID: 24039719
2.  The downward spiral of tau and autolysosomes 
Autophagy  2012;8(7):1144-1145.
A growing body of research has connected autophagy to neurodegenerative diseases such as Alzheimer disease (AD). In autopsied AD brain, large multivesicular bodies accumulate in neurons. Knockout mice deficient for key autophagy genes demonstrate age-dependent neurodegeneration. Most neurodegenerative diseases are characterized by accumulation of insoluble protein species; the type of protein and the location of aggregates within the nervous system help to define the type of disorder. It has been hypothesized that the inability to degrade such aggregates is a major causative factor in neuronal dysfunction and eventual neuronal death. As neurons are postmitotic and thus cannot regenerate themselves, mechanisms of protein clearance have received much attention in the field. The function of the ubiquitin-proteasome system (UPS) is impaired in models of neurodegeneration, and overexpression of chaperone proteins, such as those in the HSP70 family, leads to beneficial effects in many models of proteinopathies. Recently, studies of the effects of autophagy as a clearance mechanism have uncovered compelling evidence that inducing autophagy can alleviate many pathogenic and behavioral symptoms in animal and cellular models of neurodegeneration.
doi:10.4161/auto.20515
PMCID: PMC3429552  PMID: 22635052
MAPT/tau; Alzheimer disease; Drosophila; microtubule; phosphorylation
3.  Double vision 
Fly  2011;5(3):206-209.
The use of P element collections led to the discovery of unanticipated effects from common genetic background mutants white, brown and rosy in our previously reported model of tauopathy that expresses full-length human tau in the fly eye, in which mutant rosy suppresses mutant white and brown worsening of tau-induced toxicity.1 Here we discuss further possible effects of mini-white and evidence for autophagy as a mediator of white enhancement of tau toxicity.
doi:10.4161/fly.5.3.15142
PMCID: PMC3225764  PMID: 21406968
white; brown; rosy; tau; eye; autophagy; S6K
4.  Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau 
Scientific Reports  2012;2:700.
Intracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice. We observed for the first time that these authentic brain-derived tau oligomers propagate abnormal tau conformation of endogenous murine tau after prolonged incubation. The conformation and hydrophobicity of tau oligomers play a critical role in the initiation and spread of tau pathology in the naïve host in a manner reminiscent of sporadic AD.
doi:10.1038/srep00700
PMCID: PMC3463004  PMID: 23050084
5.  Guide to Understanding Drosophila Models of Neurodegenerative Diseases 
PLoS Biology  2008;6(2):e53.
Demystifying how genetic studies inDrosophila inform human disease conditions, this article highlights two studies that identify genetic modifiers of neurodegeneration.
doi:10.1371/journal.pbio.0060053
PMCID: PMC2253643  PMID: 18303955
6.  Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes 
PLoS ONE  2012;7(3):e31779.
Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency.
doi:10.1371/journal.pone.0031779
PMCID: PMC3302884  PMID: 22427807
7.  Neurodegenerative Models in Drosophila: Polyglutamine Disorders, Parkinson Disease, and Amyotrophic Lateral Sclerosis 
Neurobiology of disease  2010;40(1):29-39.
Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue.
doi:10.1016/j.nbd.2010.05.026
PMCID: PMC2926295  PMID: 20561920
polyglutamine; synuclein; parkin; DJ-1; PINK1; LRRK2; SOD; VAPB; TDP-43; Drosophila; neurodegeneration
8.  Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation 
Human Molecular Genetics  2011;20(24):4947-4977.
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
doi:10.1093/hmg/ddr432
PMCID: PMC3221533  PMID: 21949350
9.  Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice 
Background
The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD) patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate.
Results
Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I), and activated caspase-9, which is related to the apoptotic mitochondrial pathway.
Conclusions
This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.
doi:10.1186/1750-1326-6-39
PMCID: PMC3224595  PMID: 21645391
10.  Alzheimers Disease: Review of Emerging Treatment Role for Intravenous Immunoglobulins 
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. Currently available therapies are symptomatic but do not alter underlying disease progression. Immunotherapeutic approaches such as anti Aβ peptide active vaccination trials have had limited success to date. Intravenous immunoblobulin (IVIg) is widely used in immune-mediated neurological disorders such myasthenia gravis and Guillain-Barre syndrome. These preparations have been obtained from the pooled plasma of healthy human donors and contain natural anti-amyloid antibodies and are well tolerated. A small pilot study of passive immunotherapy using IVIg has suggested cognitive improvement. A multicenter phase III trial is ongoing and will determine whether or not this treatment can ameliorate cognitive deficits in mild-to-moderate AD. Here, we briefly review the pathogenic role of amyloid and tau in AD, as well as immunotherapeutic efforts to date. We also summarize what is known about naturally occurring anti-Aβ and tau antibodies in IVIg with a view toward explaining potential mechanisms underlying their therapeutic effects.
doi:10.4137/JCNSD.S5018
PMCID: PMC3663607  PMID: 23861639
Alzheimer’s; immunotherapy; conformation antibodies; tau oligomers; amyloid oligomers
11.  Pathogenic VCP/TER94 Alleles Are Dominant Actives and Contribute to Neurodegeneration by Altering Cellular ATP Level in a Drosophila IBMPFD Model 
PLoS Genetics  2011;7(2):e1001288.
Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) is caused by mutations in Valosin-containing protein (VCP), a hexameric AAA ATPase that participates in a variety of cellular processes such as protein degradation, organelle biogenesis, and cell-cycle regulation. To understand how VCP mutations cause IBMPFD, we have established a Drosophila model by overexpressing TER94 (the sole Drosophila VCP ortholog) carrying mutations analogous to those implicated in IBMPFD. Expression of these TER94 mutants in muscle and nervous systems causes tissue degeneration, recapitulating the pathogenic phenotypes in IBMPFD patients. TER94-induced neurodegenerative defects are enhanced by elevated expression of wild-type TER94, suggesting that the pathogenic alleles are dominant active mutations. This conclusion is further supported by the observation that TER94-induced neurodegenerative defects require the formation of hexamer complex, a prerequisite for a functional AAA ATPase. Surprisingly, while disruptions of the ubiquitin-proteasome system (UPS) and the ER–associated degradation (ERAD) have been implicated as causes for VCP–induced tissue degeneration, these processes are not significantly affected in our fly model. Instead, the neurodegenerative defect of TER94 mutants seems sensitive to the level of cellular ATP. We show that increasing cellular ATP by independent mechanisms could suppress the phenotypes of TER94 mutants. Conversely, decreasing cellular ATP would enhance the TER94 mutant phenotypes. Taken together, our analyses have defined the nature of IBMPFD–causing VCP mutations and made an unexpected link between cellular ATP level and IBMPFD pathogenesis.
Author Summary
Inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) is a progressive autosomal dominant disease, characterized by the adult onset of muscle degeneration, abnormal bone metabolism, and drastic behavior changes. IBMPFD is caused by specific mutations in the highly conserved VCP gene, an ATPase known to participate in numerous cellular functions. Because of its diverse functions, it has been difficult to decipher how VCP mutations cause this debilitating disorder. To understand how these specific mutations in VCP lead to IBMPFD, we have developed a Drosophila IBMPFD model by introducing analogous mutations in TER94, the fly VCP homolog. We show that TER94 carrying these specific mutations can disrupt the fly muscle and nervous systems, similar to the symptoms of IBMPFD in humans. These phenotypic similarities suggest that information gained from our analysis of TER94 will enhance our understanding of how VCP mutations cause IBMPFD. By subjecting our fly IBMPFD model to various physiological and genetic manipulations, we have uncovered a novel link between the disease progression and cellular ATP level. Thus, in addition to establishing a fly model for further analysis of this disease, our finding should suggest new therapeutic strategies for IBMPFD.
doi:10.1371/journal.pgen.1001288
PMCID: PMC3033380  PMID: 21304887
12.  New vaccine development for chronic brain disease 
Neuropsychopharmacology  2009;35(1):354.
doi:10.1038/npp.2009.147
PMCID: PMC3055416  PMID: 20010720
13.  Emerging Subspecialties in Neurology: Translational research in movement disorders 
Neurology  2009;73(8):e40-e41.
doi:10.1212/WNL.0b013e3181b388b6
PMCID: PMC2731622  PMID: 19704074
14.  Association of GSK3B With Alzheimer Disease and Frontotemporal Dementia 
Archives of neurology  2008;65(10):1368-1374.
Background
Deposits of abnormally hyperphosphorylated tau are a hallmark of several dementias, including Alzheimer disease (AD), and about 10% of familial frontotemporal dementia (FTD) cases are caused by mutations in the tau gene. As a known tau kinase, GSK3B is a promising candidate gene in the remaining cases of FTD and in AD, for which tau mutations have not been found.
Objective
To examine the promoter of GSK3B and all 12 exons, including the surrounding intronic sequence, in patients with FTD, patients with AD, and aged healthy subjects to identify single-nucleotide polymorphisms associated with disease.
Design, Setting, and Participants
Single-nucleotide polymorphism frequency was examined in a case-control cohort of 48 patients with probable AD, 102 patients with FTD, 38 patients with primary progressive aphasia, and 85 aged healthy subjects. Results were followed up in 2 independent AD family samples consisting of 437 multiplex families with AD (National Institute of Mental Health Genetics Initiative AD Study) or 150 sibships discordant for AD (Consortium on Alzheimer’s Genetics Study).
Results
Several rare sequence variants in GSK3B were identified in the case-control study. An intronic polymorphism (IVS2−68G>A) occurred at more than twice the frequency among patients with FTD (10.8%) and patients with AD (14.6%) than in aged healthy subjects (4.1%). The polymorphism showed association with disease in both follow-up samples independently, although only the Consortium on Alzheimer’s Genetics sample showed the same direction of association as the case-control sample.
Conclusions
To our knowledge, this is the first evidence that a gene known to be involved in tau phosphorylation, GSK3B, is associated with risk for primary neurodegenerative dementias. This supports previous work in animal models suggesting that such genes are therapeutic targets.
doi:10.1001/archneur.65.10.1368
PMCID: PMC2841136  PMID: 18852354
15.  BAC Transgenic Mice Expressing a Truncated Mutant Parkin Exhibit Age-dependent Hypokinetic Motor Deficits, Dopaminergic Neuron Degeneration, and Accumulation of Proteinase K-Resistant Alpha-Synuclein 
Summary
Recessive mutations in parkin are the most common cause of familial early onset Parkinson's disease (PD). Recent studies suggest that certain parkin mutants may exert dominant toxic effects to cultured cells and such dominant toxicity can lead to progressive dopaminergic (DA) neuron degeneration in Drosophila. To explore whether mutant parkin could exert similar pathogenic effects to mammalian DA neurons in vivo, we developed a Bacterial Artificial Chromosome (BAC) transgenic mouse model expressing a C-terminal truncated human mutant parkin (Parkin-Q311X) in DA neurons driven by a dopamine transporter promoter. Parkin-Q311X mice exhibit multiple late-onset and progressive hypokinetic motor deficits. Stereological analyses reveal that the mutant mice develop age-dependent DA neuron degeneration in substantia nigra accompanied by a significant loss of DA neuron terminals in the striatum. Neurochemical analyses reveal a significant reduction of the striatal dopamine level in mutant mice, which is significantly correlated with their hypokinetic motor deficits. Finally, mutant Parkin-Q311X mice, but not wild-type controls, exhibit age-dependent accumulation of proteinase-K resistant endogenous α-synuclein in substantia nigra and co-localized with 3-nitrotyrosine, a marker for oxidative protein damage. Hence, our study provides the first mammalian genetic evidence that dominant toxicity of a parkin mutant is sufficient to elicit age-dependent hypokinetic motor deficits and DA neuron loss in vivo, and uncovers a causal relationship between dominant parkin toxicity and progressive α-synuclein accumulation in DA neurons. Our study underscores the need to further explore the putative link between parkin dominant toxicity and PD.
doi:10.1523/JNEUROSCI.5351-08.2009
PMCID: PMC2803056  PMID: 19228951
Parkinson's disease; Dopaminergic; transgenic; mice; Neuron Death; Neuropathology
16.  Dissociation of tau toxicity and phosphorylation: role of GSK-3β, MARK and Cdk5 in a Drosophila model 
Human Molecular Genetics  2008;18(1):164-177.
Hyperphosphorylation of tau at multiple sites has been implicated in the formation of neurofibrillary tangles in Alzheimer’s disease; however, the relationship between toxicity and phosphorylation of tau has not been clearly elucidated. Putative tau kinases that play a role in such phosphorylation events include the proline-directed kinases glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (Cdk5), as well as nonproline-directed kinases such as microtubule affinity-regulating kinase (MARK)/PAR-1; however, whether the cascade of events linking tau phosphorylation and neurodegeneration involves sequential action of kinases as opposed to parallel pathways is still a matter of controversy. Here, we employed a well-characterized Drosophila model of tauopathy to investigate the interdependence of tau kinases in regulating the phosphorylation and toxicity of tau in vivo. We found that tau mutants resistant to phosphorylation by MARK/PAR-1 were indeed less toxic than wild-type tau; however, this was not due to their resistance to phosphorylation by GSK-3β/Shaggy. On the contrary, a tau mutant resistant to phosphorylation by GSK-3β/Shaggy retained substantial toxicity and was found to have increased affinity for microtubules compared with wild-type tau. The fly homologs of Cdk5/p35 did not have major effects on tau toxicity or phosphorylation in this model. These data suggest that, in addition to tau phosphorylation, microtubule binding plays a crucial role in the regulation of tau toxicity when misexpressed. These data have important implications for the understanding and interpretation of animal models of tauopathy.
doi:10.1093/hmg/ddn326
PMCID: PMC2644648  PMID: 18930955
17.  A Drosophila Model of ALS: Human ALS-Associated Mutation in VAP33A Suggests a Dominant Negative Mechanism 
PLoS ONE  2008;3(6):e2334.
ALS8 is caused by a dominant mutation in an evolutionarily conserved protein, VAPB (vesicle-associated membrane protein (VAMP)-associated membrane protein B)/ALS8). We have established a fly model of ALS8 using the corresponding mutation in Drosophila VAPB (dVAP33A) and examined the effects of this mutation on VAP function using genetic and morphological analyses. By simultaneously assessing the effects of VAPwt and VAPP58S on synaptic morphology and structure, we demonstrate that the phenotypes produced by neuronal expression of VAPP58S resemble VAP loss of function mutants and are opposite those of VAP overexpression, suggesting that VAPP58S may function as a dominant negative. This is brought about by aggregation of VAPP58S and recruitment of wild type VAP into these aggregates. Importantly, we also demonstrate that the ALS8 mutation in dVAP33A interferes with BMP signaling pathways at the neuromuscular junction, identifying a new mechanism underlying pathogenesis of ALS8. Furthermore, we show that mutant dVAP33A can serve as a powerful tool to identify genetic modifiers of VAPB. This new fly model of ALS, with its robust pathological phenotypes, should for the first time allow the power of unbiased screens in Drosophila to be applied to study of motor neuron diseases.
doi:10.1371/journal.pone.0002334
PMCID: PMC2390852  PMID: 18523548

Results 1-17 (17)