PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Turner syndrome masquerading as normal early puberty 
Approximately 50% of patients with Turner syndrome (TS) have complete loss of one X chromosome, whereas the rest of the patients with TS display mosaicism or structural abnormalities of the X chromosome. Most well-known common features are short stature and gonadal failure. Approximately one third of girls with TS may enter spontaneous puberty, but only half those completed with menarche. However, some atypical features of TS have been described. Many studies have been conducted to verify and delineate proposed loci for genes pertaining to the TS phenotype, and correlations between karyotype and phenotype. A few rare cases of precocious puberty with TS have been described. Here we describe a case of TS with the Xp22.1 deletion presenting with short final stature, early normal onset of spontaneous puberty, and Graves' disease, without short stature during puberty.
doi:10.6065/apem.2014.19.4.225
PMCID: PMC4316414  PMID: 25654070
Puberty; Graves disease; Turner syndrome
2.  Asymptomatic maternal 3-methylcrotonylglycinuria detected by her unaffected baby's neonatal screening test 
Korean Journal of Pediatrics  2014;57(7):329-332.
3-methylcrotonyl-coenzyme A carboxylase (3MCC) deficiency is an autosomal recessive disorder in which leucine catabolism is hampered, leading to increased urinary excretion of 3-methylcrotonylglycine. In addition, 3-hydroxyisovalerylcarnitine levels increase in the blood, and the elevated levels form the basis of neonatal screening. 3MCC deficiency symptoms are variable, ranging from neonatal onset with severe neurological abnormality to a normal, asymptomatic phenotype. Although 3MCC deficiency was previously considered to be rare, it has been found to be one of the most common metabolic disorders in newborns after the neonatal screening test using tandem mass spectrometry was introduced. Additionally, asymptomatic 3MCC deficient mothers have been identified due to abnormal results of unaffected baby's neonatal screening test. Some of the 3MCC-deficient mothers show symptoms such as fatigue, myopathy, or metabolic crisis with febrile illnesses. In the current study, we identified an asymptomatic 3MCC deficient mother when she showed abnormal results during a neonatal screening test of a healthy infant.
doi:10.3345/kjp.2014.57.7.329
PMCID: PMC4127396  PMID: 25114694
Neonatal screening; 3-Methylcrotonyl CoA carboxylase; Asymptomatic disease; Mother; Unaffected newborn
3.  Autophagy induction by tetrahydrobiopterin deficiency 
Autophagy  2011;7(11):1323-1334.
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr-/- mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr-/- mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr-/- mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr-/- mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.
doi:10.4161/auto.7.11.16627
PMCID: PMC3242797  PMID: 21795851
tetrahydrobiopterin; autophagy; mTORC1; tyrosine; phenylalanine; phenylketonuria; Akt; AMPK

Results 1-3 (3)