PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Autophagy induction by tetrahydrobiopterin deficiency 
Autophagy  2011;7(11):1323-1334.
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr-/- mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr-/- mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr-/- mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr-/- mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.
doi:10.4161/auto.7.11.16627
PMCID: PMC3242797  PMID: 21795851
tetrahydrobiopterin; autophagy; mTORC1; tyrosine; phenylalanine; phenylketonuria; Akt; AMPK
2.  Selective Amino Acid Restriction Differentially Affects the Motility and Directionality of DU145 and PC3 Prostate Cancer Cells 
Journal of Cellular Physiology  2008;217(1):184-193.
We previously found that selective restriction of amino acids inhibits invasion of two androgen-independent human prostate cancer cell lines, DU145 and PC3. Here we show that the restriction of tyrosine (Tyr) and phenylalanine (Phe), methionine (Met) or glutamine (Gln) modulates the activity of G proteins and affects the balance between two actin-binding proteins, cofilin and profilin, in these two cell lines. Selective amino acid restriction differentially reduces G protein binding to GTP in DU145 cells. Tyr/Phe deprivation reduces the amount of Rho-GTP and Rac1-GTP. Met deprivation reduces the amount of Ras-GTP and Rho-GTP, and Gln deprivation decreases Ras-GTP, Rac-GTP, and Cdc42-GTP. Restriction of these amino acids increases the amount of profilin, cofilin and phosphorylation of cofilin-Ser3. Increased PAK1 expression and phosphorylation of PAK1-Thr423, and Ser199/204 are consistent with the increased phosphorylation of LIMK1-Thr508. In PC3 cells, Tyr/Phe or Gln deprivation reduces the amount of Ras-GTP, and all of the examined amino acid restrictions reduce the amount of profilin. PAK1, LIMK1 and cofilin are not significantly altered. These data reveal that specific amino acid deprivation differentially affects actin dynamics in DU145 and PC3. Modulation on Rho, Rac, PAK1, and LIMK1 likely alter the balance between cofilin and profilin in DU145 cells. In contrast, profilin is inhibited in PC3 cells. These effects modulate directionality and motility to inhibit invasion.
doi:10.1002/jcp.21490
PMCID: PMC3401413  PMID: 18459146
3.  Differential effects of specific amino acid restriction on glucose metabolism, reduction/oxidation status and mitochondrial damage in DU145 and PC3 prostate cancer cells 
Oncology letters  2011;2(2):349-355.
Selective amino acid restriction targets mitochondria to induce apoptosis of DU145 and PC3 prostate cancer cells. Biochemical assays and flow cytometry were uitilized to analyze the glucose consumption, lactate production, pyruvate dehydrogenase (PDH), nicotinamide adenine dinucleotide (NAD)/NADH and nicotinamide adenine dinucleotide phosphate (NADP)/NADPH ratios, mitochondrial glutathione peroxidase (GPx), manganese superoxide dismutase (SOD), glutathione, reactive oxygen species (ROS) and DNA damage in DU145 and PC prostate cancer cells cultured under various amino acid deprived conditions. Restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln) or methionine (Met) differentially modulated glucose metabolism and PDH and antioxidant enzyme activity in the mitochondria of the two prostate cancer cell lines. In DU145 cells, Gln and Met restriction increased glucose consumption and decreased lactate production, but Tyr/Phe restriction did not. The examined restrictions increased mitochondrial PDH activity and accumulation of ROS. Gln and Met restriction increased GPx activity. Tyr/Phe and Met restriction increased SOD during the first 2 days of the restriction, and the activity returned to the basal level on day 4. All amino acid restrictions decreased reduced glutathione (GSH) and induced mitochondrial DNA damage. In PC3 cells, all amino acid restrictions reduced glucose consumption and lactate production. Gln restriction increased ROS and elevated GPx activity. Tyr/Phe restriction increased SOD activity. The amino acid restriction decreased GSH, but did not cause mitochondrial DNA damage. Specific amino acid dependency differentially regulates glucose metabolism, oxidation-reduction reactions of mitochondria and mitochondrial damage in DU145 and PC3 prostate cancer cell lines.
doi:10.3892/ol.2011.237
PMCID: PMC3057076  PMID: 21415930
glucose metabolism; amino acid dependency; oxidative stress; mitochondrial damage; prostate cancer
4.  Differential effects of specific amino acid restriction on glucose metabolism, reduction/oxidation status and mitochondrial damage in DU145 and PC3 prostate cancer cells 
Oncology Letters  2011;2(2):349-355.
Selective amino acid restriction targets mitochondria to induce apoptosis of DU145 and PC3 prostate cancer cells. Biochemical assays and flow cytometry were uitilized to analyze the glucose consumption, lactate production, pyruvate dehydrogenase (PDH), nicotinamide adenine dinucleotide (NAD)/NADH and nicotinamide adenine dinucleotide phosphate (NADP)/NADPH ratios, mitochondrial glutathione peroxidase (GPx), manganese superoxide dismutase (SOD), glutathione, reactive oxygen species (ROS) and DNA damage in DU145 and PC prostate cancer cells cultured under various amino acid deprived conditions. Restriction of tyrosine and phenylalanine (Tyr/Phe), glutamine (Gln) or methionine (Met) differentially modulated glucose metabolism and PDH and antioxidant enzyme activity in the mitochondria of the two prostate cancer cell lines. In DU145 cells, Gln and Met restriction increased glucose consumption and decreased lactate production, but Tyr/Phe restriction did not. The examined restrictions increased mitochondrial PDH activity and accumulation of ROS. Gln and Met restriction increased GPx activity. Tyr/Phe and Met restriction increased SOD during the first 2 days of the restriction, and the activity returned to the basal level on day 4. All amino acid restrictions decreased reduced glutathione (GSH) and induced mitochondrial DNA damage. In PC3 cells, all amino acid restrictions reduced glucose consumption and lactate production. Gln restriction increased ROS and elevated GPx activity. Tyr/Phe restriction increased SOD activity. The amino acid restriction decreased GSH, but did not cause mitochondrial DNA damage. Specific amino acid dependency differentially regulates glucose metabolism, oxidation-reduction reactions of mitochondria and mitochondrial damage in DU145 and PC3 prostate cancer cell lines.
doi:10.3892/ol.2011.237
PMCID: PMC3057076  PMID: 21415930
glucose metabolism; amino acid dependency; oxidative stress; mitochondrial damage; prostate cancer
5.  Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth1 
The Journal of nutrition  2006;136(10):2542-2546.
Resveratrol has been shown to have anticarcinogenic activity. We previously found that resveratrol inhibited growth and induced apoptosis in 2 human melanoma cell lines. In this study we determined whether resveratrol would inhibit human melanoma xenograft growth. Athymic mice received control diets or diets containing 110 μmol/L or 263 μmol/L resveratrol, 2 wk prior to subcutaneous injection of the tumor cells. Tumor growth was measured during a 3-wk period. Metabolism of resveratrol was assayed by bolus gavage of 75 mg/kg resveratrol in tumor-bearing and nontumor-bearing mice. Pellets containing 10–100 mg resveratrol were implanted into the mice, next to newly palpated tumors, and tumor growth determined. We also determined the effect of a major resveratrol metabolite, piceatannol, on experimental lung metastasis. Resveratrol, at any concentration tested, did not have a statistically significant effect on tumor growth. The higher levels of resveratrol tested (0.006% in food or 100 mg in slow-release pellets) tended to stimulate tumor growth (P = 0.08–0.09). Resveratrol and its major metabolites, resveratrol glucuronide and piceatannol, were found in serum, liver, skin, and tumor tissue. Piceatannol did not affect the in vitro growth of a murine melanoma cell line, but significantly stimulated the number of lung metastases when these melanoma cells were directly injected into the tail vein of the mouse. These results suggest that resveratrol is not likely to be useful in the treatment of melanoma and that the effects of phytochemicals on cell cultures may not translate to the whole animal system.
PMCID: PMC1612582  PMID: 16988123

Results 1-5 (5)