PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Macroautophagy is deregulated in murine and human lupus T lymphocytes 
Autophagy  2012;8(7):1113-1123.
Macroautophagy was recently shown to regulate both lymphocyte biology and innate immunity. In this study we sought to determine whether a deregulation of autophagy was linked to the development of autoimmunity. Genome-wide association studies have pointed out nucleotide polymorphisms that can be associated with systemic lupus erythematosus, but the potential role of autophagy in the initiation and/or development of this syndrome is still unknown. Here, we provide first clues of macroautophagy deregulation in lupus. By the use of LC3 conversion assays and electron microscopy experiments, we observed that T cells from two distinct lupus-prone mouse models, i.e., MRLlpr/lpr and (NZB/NZW)F1, exhibit high loads of autophagic compartments compared with nonpathologic control CBA/J and BALB/c mice. Unlike normal mice, autophagy increases with age in murine lupus. In vivo lipopolysaccharide stimulation in CBA/J control mice efficiently activates T lymphocytes but fails to upregulate formation of autophagic compartments in these cells. This argues against a deregulation of autophagy in lupus T cells solely resulting from an acute inflammation injury. Autophagic vacuoles quantified by electron microscopy are also found to be significantly more frequent in T cells from lupus patients compared with healthy controls and patients with non-lupus autoimmune diseases. This elevated number of autophagic structures is not distributed homogeneously and appears to be more pronounced in certain T cells. These results suggest that autophagy could regulate the survival of autoreactive T cell during lupus, and could thus lead to design new therapeutic options for lupus.
doi:10.4161/auto.20275
PMCID: PMC3429547  PMID: 22522825
systemic lupus erythematosus; lupus-prone mice; macroautophagy; T lymphocytes
2.  HSC70 blockade by the therapeutic peptide P140 affects autophagic processes and endogenous MHCII presentation in murine lupus 
Annals of the Rheumatic Diseases  2010;70(5):837-843.
Background
The P140 phosphopeptide issued from the spliceosomal U1-70K small nuclear ribonucleoprotein protein displays protective properties in MRL/lpr lupus-prone mice. It binds both major histocompatibility class II (MHCII) and HSC70/Hsp73 molecules. P140 peptide increases MRL/lpr peripheral blood lymphocyte apoptosis and decreases autoepitope recognition by T cells.
Objective
To explore further the mode of action of P140 peptide on HSC70+ antigen-presenting cells.
Methods
P140 biodistribution was monitored in real time using an imaging system and by fluorescence and electron microscopy. Fluorescence activated cell sorting and Western blotting experiments were used to evaluate the P140 effects on autophagic flux markers.
Results
P140 fluorescence accumulated especially in the lungs and spleen. P140 peptide reduced the number of peripheral and splenic T and B cells without affecting these cells in normal mice. Remaining MRL/lpr B cells responded normally to mitogens. P140 peptide decreased the expression levels of HSC70/Hsp73 chaperone and stable MHCII dimers, which are both increased in MRL/lpr splenic B cells. It impaired refolding properties of chaperone HSC70. In MRL/lpr B cells, it increased the accumulation of the autophagy markers p62/SQSTM1 and LC3-II, consistent with a downregulated lysosomal degradation during autophagic flux.
Conclusion
The study results suggest that after P140 peptide binding to HSC70, the endogenous (auto)antigen processing might be greatly affected in MRL/lpr antigen-presenting B cells, leading to the observed decrease of autoreactive T-cell priming and signalling via a mechanism involving a lysosomal degradation pathway. This unexpected mechanism might explain the beneficial effect of P140 peptide in treated MRL/lpr mice.
doi:10.1136/ard.2010.139832
PMCID: PMC3070272  PMID: 21173017
3.  The Spliceosomal Phosphopeptide P140 Controls the Lupus Disease by Interacting with the HSC70 Protein and via a Mechanism Mediated by γδ T Cells 
PLoS ONE  2009;4(4):e5273.
The phosphopeptide P140 issued from the spliceosomal U1-70K snRNP protein is recognized by lupus CD4+ T cells, transiently abolishes T cell reactivity to other spliceosomal peptides in P140-treated MRL/lpr mice, and ameliorates their clinical features. P140 modulates lupus patients' T cell response ex vivo and is currently included in phase IIb clinical trials. Its underlying mechanism of action remains elusive. Here we show that P140 peptide binds a unique cell-surface receptor, the constitutively-expressed chaperone HSC70 protein, known as a presenting-protein. P140 induces apoptosis of activated MRL/lpr CD4+ T cells. In P140-treated mice, it increases peripheral blood lymphocyte apoptosis and decreases B cell, activated T cell, and CD4−CD8−B220+ T cell counts via a specific mechanism strictly depending on γδ T cells. Expression of inflammation-linked genes is rapidly regulated in CD4+ T cells. This work led us to identify a powerful pathway taken by a newly-designed therapeutic peptide to immunomodulate lupus autoimmunity.
doi:10.1371/journal.pone.0005273
PMCID: PMC2669294  PMID: 19390596

Results 1-3 (3)