Search tips
Search criteria

Results 1-25 (48)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Regulation and Functional Significance of Autophagy in Respiratory Cell Biology and Disease 
Autophagy is a homeostatic process common to all eukaryotic cells that serves to degrade intracellular components. Among three classes of autophagy, macroautophagy is best understood, and is the subject of this Review. The function of autophagy is multifaceted, and includes removal of long-lived proteins and damaged or unneeded organelles, recycling of intracellular components for nutrients, and defense against pathogens. This process has been extensively studied in yeast, and understanding of its functional significance in human disease is also increasing. This Review explores the basic machinery and regulation of autophagy in mammalian systems, methods employed to measure autophagic activity, and then focuses on recent discoveries about the functional significance of autophagy in respiratory diseases, including chronic obstructive pulmonary disease, cystic fibrosis, tuberculosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, acute lung injury, and lymphangioleiomyomatosis.
PMCID: PMC3547078  PMID: 22984088
autophagy; chronic obstructive pulmonary disease; idiopathic pulmonary fibrosis; epithelial cells; fibroblasts
2.  Autophagy 
Autophagy is a highly conserved homeostatic pathway by which cells transport damaged proteins and organelles to lysosomes for degradation. Dysregulation of autophagy contributes to the pathogenesis of clinically important disorders in a variety of organ systems but, until recently, little was known about its relationship to diseases of the lung. However, there is now growing evidence at the basic research level that autophagy is linked to the pathogenesis of important pulmonary disorders such as chronic obstructive pulmonary disease, cystic fibrosis, and tuberculosis. In this review, we provide an introduction to the field of autophagy research geared to clinical and research pulmonologists. We focus on the best-studied autophagic mechanism, macroautophagy, and summarize studies that link the regulation of this pathway to pulmonary disease. Last, we offer our perspective on how a better understanding of macroautophagy might be used for designing novel therapies for pulmonary disorders.
PMCID: PMC3262043  PMID: 21836133
autophagy; macroautophagy; lung; disease; chronic obstructive pulmonary disease
3.  Cross talk between autophagy and apoptosis in pulmonary hypertension 
Pulmonary Circulation  2012;2(4):407-414.
Endothelial cell (EC) apoptosis and apoptosis resistant proliferation have been proposed to play crucial roles in the development of featured plexiform lesions in the pathogenesis of pulmonary hypertension (PH). Subsequently, EC injury associated smooth muscle cell (SMC) proliferation facilitates vascular remodeling and eventually leads to narrowed vascular lumen, increased pulmonary vascular resistance, increased pulmonary arterial pressure, and right heart failure. The imbalance between cell death and proliferation occurs in every stage of pulmonary vascular remodeling and pathogenesis of PH, and involves every cell type in the vasculature including, but not limited to ECs, SMCs, and fibroblasts. Despite extensive studies, the detailed cellular and molecular mechanisms on how the transition from initial apoptosis of ECs to apoptosis resistant proliferation on ECs and SMCs remains unclear. Recent knowledge on autophagy, a conservative and powerful regulatory machinery existing in almost all mammalian cells, has shed light on the complex and delicate control on cell fate in the development of vascular remodeling in PH. In this review, we will discuss the recent understandings on how the cross-talk between apoptosis and autophagy regulates cell death or proliferation in PH pathogenesis, particularly in pulmonary vascular remodeling involving ECs and SMCs.
PMCID: PMC3555411  PMID: 23372925
apoptosis; autophagy; beclin-1; LC3; pulmonary hypertension
4.  Heme Oxygenase-1/Carbon Monoxide 
Heme oxygenase-1 (HO-1), a ubiquitous inducible stress-response protein, serves a major metabolic function in heme turnover. HO activity cleaves heme to form biliverdin-IXα, carbon monoxide (CO), and iron. Genetic experiments have revealed a central role for HO-1 in tissue homeostasis, protection against oxidative stress, and in the pathogenesis of disease. Four decades of research have witnessed not only progress in elucidating the molecular mechanisms underlying the regulation and function of this illustrious enzyme, but also have opened remarkable translational applications for HO-1 and its reaction products. CO, once regarded as a metabolic waste, can act as an endogenous mediator of cellular signaling and vascular function. Exogenous application of CO by inhalation or pharmacologic delivery can confer cytoprotection in preclinical models of lung/vascular injury and disease, based on anti-apoptotic, anti-inflammatory, and anti-proliferative properties. The bile pigments, biliverdin and bilirubin, end products of heme degradation, have also shown potential as therapeutics in vascular disease based on anti-inflammatory and anti-proliferative activities. Further translational and clinical trials research will unveil whether the HO-1 system or any of its reaction products can be successfully applied as molecular medicine in human disease.
PMCID: PMC2742746  PMID: 19617398
carbon monoxide; bilirubin; heme oxygenase-1; lung injury
5.  CCAAT/Enhancer-Binding Protein Mediates Carbon Monoxide–Induced Suppression of Cyclooxygenase-2 
Cyclooxygenase-2 (COX-2) is a key enzyme involved in the inflammatory process that is rapidly induced in macrophages in response to LPS. Carbon monoxide (CO), a byproduct of heme oxygnease-1, can suppress proinflammatory response in various in vitro and in vivo models of inflammation. This study was undertaken to examine whether CO can regulate (and if so, to delineate the mechanism by which CO regulates) LPS-induced COX-2 expression in macrophages. RAW 264.7 murine macrophages were stimulated with LPS (0–10 ng/ml) with or without CO (500 ppm). Northern and Western blot analysis was done. Progstaglandin E2 and nitrite concentration was measured from cell culture supernatant. Electrophoretic mobility shift assay was performed to assess nuclear factor binding. CO downregulated LPS-induced COX-2 mRNA and protein expression. CO also inhibited LPS-induced prostaglandin E2 secretion (P < 0.05). CO also decreased LPS-induced CCAAT/enhancer-binding protein (C/EBP) β and δ protein expression in LPS-treated RAW 264.7 cells. Gel shift analysis revealed that CO treatment decreased LPS-induced activation of protein binding to C/EBP consensus oligonucleotides of murine cyclooxygenase-2 promoter. CO also decreased LPS-induced nitric oxide synthase-2 protein expression and nitrite production, and decreased LPS-induced activation of protein binding to C/EBP consensus oligonucleotides of murine nitric oxide synthase-2 promoter. CO may act as an important regulator of inflammation by virtue of its ability to regulate C/EBPs.
PMCID: PMC2643257  PMID: 16543610
heme oxygenase; lipopolysaccharides; nitric oxide synthase
6.  Caveolin-1 Confers Antiinflammatory Effects in Murine Macrophages via the MKK3/p38 MAPK Pathway 
Caveolin-1 has been reported to regulate apoptosis, lipid metabolism, and endocytosis in macrophages. In the present study, we demonstrate that caveolin-1 can act as a potent immunomodulatory molecule. We first observed caveolin-1 expression in murine alveolar macrophages by Western blotting and immunofluorescence microscopy. Loss-of-function experiments using small interfering RNA showed that downregulating caveolin-1 expression in murine alveolar and peritoneal macrophages increased LPS-induced proinflammatory cytokine TNF-α and IL-6 production but decreased anti-inflammatory cytokine IL-10 production. Gain-of-function experiments demonstrated that overexpression of caveolin-1 in RAW264.7 cells decreased LPS-induced TNF-α and IL-6 production and augmented IL-10 production. p38 mitogen-activated protein kinase (MAPK) phosphorylation was increased by overexpressing caveolin-1 in RAW264.7 cells, whereas c-Jun N-terminal kinase, extracellular signal-regulated kinase MAPK, and Akt phosphorylation were inhibited. The antiinflammatory modulation of LPS-induced cytokine production by caveolin-1 was significantly abrogated by the administration of p38 inhibitor SB203580 in RAW264.7 cells. Peritoneal macrophages isolated from MKK3 null mice did not demonstrate any modulation of LPS-induced cytokine production by caveolin-1. LPS-induced activation of NF-κB and AP-1 determined by electrophoretic mobility shift assay were significantly reduced by overexpressing caveolin-1 in RAW264.7 cells. The reductions were attenuated by the administration of p38 inhibitor SB203580. Taken together, our data suggest that caveolin-1 acts as a potent immunomodulatory effecter molecule in immune cells and that the regulation of LPS-induced cytokine production by caveolin-1 involves the MKK3/p38 MAPK pathway.
PMCID: PMC2644205  PMID: 16357362
caveolin-1; cytokines; inflammation; lipopolysaccharide; macrophages
7.  p62 Sequestosome 1/Light Chain 3b Complex Confers Cytoprotection on Lung Epithelial Cells after Hyperoxia 
Lung epithelial cell death is a prominent feature of hyperoxic lung injury, and has been considered a very important underlying mechanism of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Here we report on a novel mechanism involved in epithelial cytoprotection and homeostasis after oxidative stress. p62 (sequestosome 1; SQSTM1) is a ubiquitously expressed cellular protein. It interacts with ubiquitinated proteins and autophagic marker light chain 3b (LC3b), thus mediating the degradation of selective targets. In this study, we explored the role of p62 in mitochondria-mediated cell death after hyperoxia. Lung alveolar epithelial cells demonstrate abundant p62 expression, and p62 concentrations are up-regulated by oxidative stress at both the protein and mRNA levels. The p62/LC3b complex interacts with Fas and truncated BID (tBID) physically. These interactions abruptly diminish after hyperoxia. The deletion of p62 robustly increases tBID and cleaved caspase-3, implying an antiapoptotic effect. This antiapoptotic effect of p62 is further confirmed by measuring caspase activities, cleaved poly ADP ribose polymerase, and cell viability. The deletion of the p62 PBI domain or the ubiquitin-associated domain both lead to elevated tBID, cleaved caspase-3, and significantly more cell death after hyperoxia. Moreover, p62 traffics in an opposite direction with LC3b after hyperoxia, leading to the dissociation of the p62/Cav-1/LC3b/BID complex. Subsequently, the LC3b-mediated lysosomal degradation of tBID is eliminated. Taken together, our data suggest that the p62/LC3b complex regulates lung alveolar epithelial cell homeostasis and cytoprotection after hyperoxia.
PMCID: PMC3653608  PMID: 23333919
p62/SQSTM1; hyperoxia; tBid; LC3b; apoptosis
8.  Carbon Monoxide in Exhaled Breath Testing and Therapeutics 
Journal of breath research  2013;7(1):017111.
Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation, and potential diagnostic value remains incompletely characterized. Among other candidate “medicinal gases” with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease.
PMCID: PMC3651886  PMID: 23446063
Carbon Monoxide; Exhaled Breath; Heme Oxygenase-1
9.  The Impact of Autophagy on Cell Death Modalities 
Autophagy represents a homeostatic cellular mechanism for the turnover of organelles and proteins, through a lysosome-dependent degradation pathway. During starvation, autophagy facilitates cell survival through the recycling of metabolic precursors. Additionally, autophagy can modulate other vital processes such as programmed cell death (e.g., apoptosis), inflammation, and adaptive immune mechanisms and thereby influence disease pathogenesis. Selective pathways can target distinct cargoes (e.g., mitochondria and proteins) for autophagic degradation. At present, the causal relationship between autophagy and various forms of regulated or nonregulated cell death remains unclear. Autophagy can occur in association with necrosis-like cell death triggered by caspase inhibition. Autophagy and apoptosis have been shown to be coincident or antagonistic, depending on experimental context, and share cross-talk between signal transduction elements. Autophagy may modulate the outcome of other regulated forms of cell death such as necroptosis. Recent advances suggest that autophagy can dampen inflammatory responses, including inflammasome-dependent caspase-1 activation and maturation of proinflammatory cytokines. Autophagy may also act as regulator of caspase-1 dependent cell death (pyroptosis). Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases in which apoptosis or other forms of regulated cell death may play a cardinal role.
PMCID: PMC3932252  PMID: 24639873
10.  Autophagy: An Integral Component of the Mammalian Stress Response 
Mammalian cells and tissues respond to chemical and physical stress by inducing adaptive or protective mechanisms that prolong survival. Among these, the major stress inducible proteins (heat shock proteins, glucose regulated proteins, heme oxygenase-1) provide cellular protection through protein chaperone and/or anti-oxidative and anti-inflammatory functions. In recent years it has become clear that autophagy, a genetically-programmed and evolutionarily-conserved cellular process represents another adaptive response to cellular stress. During autophagy cytosolic material, including organelles, proteins, and foreign pathogens, are sequestered into membrane-bound vesicles termed autophagosomes, and then delivered to the lysosome for degradation. Through recycling of cellular biochemicals, autophagy provides a mechanism for adaptation to starvation. Recent research has uncovered selective autophagic pathways that target distinct cargoes to autophagosomes, including mechanisms for the clearance of aggregated protein, and for the removal of dysfunctional mitochondria (mitophagy). Autophagy can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress and oxidative stress, and plays an integral role in the mammalian stress response. Understanding of the interaction and co-regulation of autophagy with other stress-inducible systems will be useful in the design and implementation of therapeutics targeting this pathway.
PMCID: PMC3865984  PMID: 24358454
apoptosis; autophagy; endoplasmic reticulum; mitochondria; oxidative stress; stress proteins
11.  Deacetylation of p53 induces autophagy by suppressing Bmf expression 
The Journal of Cell Biology  2013;201(3):427-437.
IFN-γ induces the interaction of HDAC1 and p53, leading to p53 deacetylation, which facilitates autophagy via Bmf suppression.
Interferon γ (IFN-γ)–induced cell death is mediated by the BH3-only domain protein, Bik, in a p53-independent manner. However, the effect of IFN-γ on p53 and how this affects autophagy have not been reported. The present study demonstrates that IFN-γ down-regulated expression of the BH3 domain-only protein, Bmf, in human and mouse airway epithelial cells in a p53-dependent manner. p53 also suppressed Bmf expression in response to other cell death–stimulating agents, including ultraviolet radiation and histone deacetylase inhibitors. IFN-γ did not affect Bmf messenger RNA half-life but increased nuclear p53 levels and the interaction of p53 with the Bmf promoter. IFN-γ–induced interaction of HDAC1 and p53 resulted in the deacetylation of p53 and suppression of Bmf expression independent of p53’s proline-rich domain. Suppression of Bmf facilitated IFN-γ–induced autophagy by reducing the interaction of Beclin-1 and Bcl-2. Furthermore, autophagy was prominent in cultured bmf−/− but not in bmf+/+ cells. Collectively, these observations show that deacetylation of p53 suppresses Bmf expression and facilitates autophagy.
PMCID: PMC3639396  PMID: 23629966
12.  Mitochondrial Dysfunction Induces Formation of Lipid Droplets as a Generalized Response to Stress 
Lipid droplet (LD) formation is a hallmark of cellular stress. Cells attempt to combat noxious stimuli by switching their metabolism from oxidative phosphorylation to glycolysis, sparing resources in LDs for generating cellular reducing power and for anabolic biosynthesis. Membrane phospholipids are also a source of LDs. To elucidate the formation of LDs, we exposed mice to hyperoxia, hypoxia, myocardial ischemia, and sepsis induced by cecal ligation and puncture (CLP). All the above-mentioned stressors enhanced the formation of LDs, as assessed by transmission electron microscopy, with severe mitochondrial swelling. Disruption of mitochondria by depleting mitochondrial DNA (ρ0 cells) significantly augmented the formation of LDs, causing transcriptional activation of fatty acid biosynthesis and metabolic reprogramming to glycolysis. Heme oxygenase (HO)-1 counteracts CLP-mediated septic shock in mouse models. In HO-1-deficient mice, LD formation was not observed upon CLP, but a concomitant decrease in “LD-decorating proteins” was observed, implying a link between LDs and cytoprotective activity. Collectively, LD biogenesis during stress can trigger adaptive LD formation, which is dependent on mitochondrial integrity and HO-1 activity; this may be a cellular survival strategy, apportioning energy-generating substrates to cellular defense.
PMCID: PMC3794647  PMID: 24175011
13.  Regenerative Pulmonary Medicine: Potential and Promise, Pitfalls and Challenges 
Lung disease is an increasing public health problem worldwide. According to the American Lung Association, more than 400,000 people die of lung diseases in the United States each year, which accounts for one in every six deaths overall. These staggering figures translate into a cost of more than $100 billion per year [1]. Even more concerning is the fact that in many chronic lung diseases, we have no therapeutic interventions with which to arrest or reverse the pathobiology of these destructive processes, or to restore functional lung tissue. Thus, we treat patients’ symptoms, but the underlying diseases continue to progress. In these circumstances, our therapeutic options ultimately turn to lung transplantation once diseases such as chronic obstructive pulmonary disease (COPD)/emphysema, idiopathic pulmonary fibrosis, cystic fibrosis, and idiopathic pulmonary arterial hypertension (PAH) become end-stage. Lung transplantation is a life-prolonging procedure for many patients; however, there is a shortage of available donor lungs, and, even when transplanted, the average survival for adult lung recipients is approximately 5–6 years [2]. Recipients are vulnerable to transplant-related diseases, such as bronchiolitis obliterans syndrome, which limits long-term survival in many patients [2],[3]. Thus, there is a desperate need for new and innovative therapies for a number of chronic lung diseases, including diseases that develop after lung transplantation.
PMCID: PMC3513384  PMID: 22435680
regenerative medicine; stem cell; lung injury; emphysema; pulmonary hypertension; mesenchymal stem cell
14.  Hyperoxia-Induced LC3B Interacts with the Fas Apoptotic Pathway in Epithelial Cell Death 
Epithelial cell death plays a critical role in hyperoxia-induced lung injury. We investigated the involvement of the autophagic marker microtubule-associated protein-1 light chain-3B (LC3B) in epithelial cell apoptosis after hyperoxia. Prolonged hyperoxia (>95% O2), which causes characteristic lung injury in mice, activated morphological and biochemical markers of autophagy. Hyperoxia induced the time-dependent expression and conversion of LC3B-I to LC3B-II in mouse lung in vivo and in cultured epithelial cells (Beas-2B, human bronchial epithelial cells) in vitro. Hyperoxia increased autophagosome formation in Beas-2B cells, as evidenced by electron microscopy and increased GFP-LC3 puncta. The augmented LC3B level after hyperoxia was transcriptionally regulated and dependent in part on the c-Jun N-terminal kinase pathway. We hypothesized that LC3B plays a regulatory role in hyperoxia-induced epithelial apoptosis. LC3B siRNA promoted hyperoxia-induced cell death in epithelial cells, whereas overexpression of LC3B conferred cytoprotection after hyperoxia. The autophagic protein LC3B cross-regulated the Fas apoptotic pathway by physically interacting with the components of death-inducing signaling complex. This interaction was mediated by caveolin-1 tyrosine 14, which is a known target of phosphorylation induced by hyperoxia. Taken together, hyperoxia-induced LC3B activation regulates the Fas apoptotic pathway and thus confers cytoprotection in lung epithelial cells. The interaction of LC3B and Fas pathways requires cav-1.
PMCID: PMC3359946  PMID: 22095627
apoptosis; autophagy; hyperoxia; lung injury; caveolin-1
15.  Autophagic proteins 
Autophagy  2012;8(3):426-428.
Oxygen (O2), while essential for aerobic life, can also cause metabolic toxicity through the excess generation of reactive oxygen species (ROS). Pathological changes in ROS production can originate through the partial reduction of O2 during mitochondrial electron transport, as well as from enzymatic sources. This phenomenon, termed the oxygen paradox, has been implicated in aging and disease, and is especially evident in critical care medicine. Whereas high O2 concentrations are utilized as a life-sustaining therapeutic for respiratory insufficiency, they in turn can cause acute lung injury. Alveolar epithelial cells represent a primary target of hyperoxia-induced lung injury. Recent studies have indicated that epithelial cells exposed to high O2 concentrations die by apoptosis, or necrosis, and can also exhibit mixed-phenotypes of cell death (aponecrosis). Autophagy, a cellular homeostatic process responsible for the lysosomal turnover of organelles and proteins, has been implicated as a general response to oxidative stress in cells and tissues. This evolutionarily conserved process is finely regulated by a complex interplay of protein factors. During autophagy, senescent organelles and cellular proteins are sequestered in autophagic vacuoles (autophagosomes) and subsequently targeted to the lysosome, where they are degraded by lysosomal hydrolases, and the breakdown products released for reutilization in anabolic pathways. Autophagy has been implicated as a cell survival mechanism during nutrient-deficiency states, and more generally, as a determinant of cell fate. However, the mechanisms by which autophagy and/or autophagic proteins potentially interact with and/or regulate cell death pathways during high oxygen stress, remain only partially understood.
PMCID: PMC3337844  PMID: 22302001
acute lung injury; Apoptosis; autophagy; caveolin-1; Fas; hyperoxia; LC3B
16.  Carbon monoxide: present and future indications for a medical gas 
Gaseous molecules continue to hold new promise in molecular medicine as experimental and clinical therapeutics. The low molecular weight gas carbon monoxide (CO), and similar gaseous molecules (e.g., H2S, nitric oxide) have been implicated as potential inhalation therapies in inflammatory diseases. At high concentration, CO represents a toxic inhalation hazard, and is a common component of air pollution. CO is also produced endogenously as a product of heme degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemoglobin, causing hypoxemia and decreased oxygen delivery to tissues at high concentrations. At physiological concentrations, CO may have endogenous roles as a signal transduction molecule in the regulation of neural and vascular function and cellular homeostasis. CO has been demonstrated to act as an effective anti-inflammatory agent in preclinical animal models of inflammation, acute lung injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional experimental indications for this gas include pulmonary fibrosis, pulmonary hypertension, metabolic diseases, and preeclampsia. The development of chemical CO releasing compounds constitutes a novel pharmaceutical approach to CO delivery with demonstrated effectiveness in sepsis models. Current and pending clinical evaluation will determine the usefulness of this gas as a therapeutic in human disease.
PMCID: PMC3604600  PMID: 23525151
Acute lung injury; Carbon monoxide; Heme oxygenase (decyclizing); Reperfusion injury; Sepsis
17.  NOD2 Deficiency Enhances Neointimal Formation in Response to Vascular Injury 
Nucleotide-binding oligomerization domain protein 2 (NOD2) stimulates diverse inflammatory responses resulting in differential cellular phenotypes. To identify the role of NOD2 in vascular arterial obstructive diseases, we investigated the expression and pathophysiological role of NOD2 in a vascular injury model of neointimal hyperplasia.
Methods and Results
We first analyzed for neointimal hyperplasia following femoral artery injury in NOD2+/+ and NOD2−/− mice. NOD2−/− mice showed a 2.86-fold increase in neointimal formation that was mainly composed of SM α-actin positive cells. NOD2 was expressed in vascular smooth muscle cells (VSMCs) and NOD2−/− VSMCs showed increased cell proliferation in response to mitogenic stimuli, PDGF-BB or fetal bovine serum (FBS), compared with NOD2+/+ VSMCs. Furthermore, NOD2 deficiency markedly promoted VSMCs migration in response to PDGF-BB and this increased cell migration was attenuated by a PI3 kinase inhibitor. However, PKC and JNK inhibitors exerted negligible effects. Moreover, muramyl dipeptide-stimulated NOD2 prevented PDGF-BB-induced VSMCs migration.
Functional NOD2 is expressed in VSMCs, and NOD2 deficiency promoted VSMCs proliferation, migration, and neointimal formation after vascular injury. These results provide evidence for the involvement of NOD2 in vascular homeostasis and tissue injury, serving as a potential molecular target in the modulation of arteriosclerotic vascular disease.
PMCID: PMC3213020  PMID: 21903945
18.  Carbon Monoxide Activates Autophagy via Mitochondrial Reactive Oxygen Species Formation 
Autophagy, an autodigestive process that degrades cellular organelles and protein, plays an important role in maintaining cellular homeostasis during environmental stress. Carbon monoxide (CO), a toxic gas and candidate therapeutic molecule, confers cytoprotection in animal models of acute lung injury. The mechanisms underlying CO-dependent lung cell protection and the role of autophagy in this process remain unclear. Here, we demonstrate that CO exposure time-dependently increased the expression and activation of the autophagic protein, microtubule-associated protein–1 light chain-3B (LC3B) in mouse lung, and in cultured human alveolar (A549) or human bronchial epithelial cells. Furthermore, CO increased autophagosome formation in epithelial cells by electron microscopy and green fluorescent protein (GFP)-LC3 puncta assays. Recent studies indicate that reactive oxygen species (ROS) play an important role in the activation of autophagy. CO up-regulated mitochondria-dependent generation of ROS in epithelial cells, as assayed by MitoSOX fluorescence. Furthermore, CO-dependent induction of LC3B expression was inhibited by N-acetyl-L-cysteine and the mitochondria-targeting antioxidant, Mito-TEMPO. These data suggest that CO promotes the autophagic process through mitochondrial ROS generation. We investigated the relationships between autophagic proteins and CO-dependent cytoprotection using a model of hyperoxic stress. CO protected against hyperoxia-induced cell death, and inhibited hyperoxia-associated ROS production. The ability of CO to protect against hyperoxia-induced cell death and caspase-3 activation was compromised in epithelial cells infected with LC3B-small interfering (si)RNA, indicating a role for autophagic proteins. These studies uncover a new mechanism for the protective action of CO, in support of potential therapeutic application of this gas.
PMCID: PMC3208612  PMID: 21441382
apoptosis; autophagy; carbon monoxide; epithelial cells; hyperoxia
19.  Characterization of macroautophagic flux in vivo using a leupeptin-based assay 
Autophagy  2011;7(6):629-642.
Macroautophagy is a highly conserved catabolic process that is crucial for organ homeostasis in mammals. However, methods to directly measure macroautophagic activity (or flux) in vivo are limited. In this study we developed a quantitative macroautophagic flux assay based on measuring LC3b protein turnover in vivo after administering the protease inhibitor leupeptin. Using this assay we then characterized basal macroautophagic flux in different mouse organs. We found that the rate of LC3b accumulation after leupeptin treatment was greatest in the liver and lowest in spleen. Interestingly we found that LC3a, an ATG8/LC3b homologue and the LC3b-interacting protein p62 were degraded with similar kinetics to LC3b. However, the LC3b-related proteins GABARAP and GATE-16 were not rapidly turned over in mouse liver, implying that different LC3b homologues may contribute to macroautophagy via distinct mechanisms. Nutrient starvation augmented macroautophagic flux as measured by our assay, while refeeding the animals after a period of starvation significantly suppressed flux. We also confirmed that beclin 1 heterozygous mice had reduced basal macroautophagic flux compared to wild-type littermates. These results illustrate the usefulness of our leupeptin-based assay for studying the dynamics of macroautophagy in mice.
PMCID: PMC3127049  PMID: 21460622
macroautophagy; autophagy; flux; mice; in vivo; LC3; GABARAP; GATE-16; leupeptin; cycloheximide
20.  Autophagic Protein LC3B Confers Resistance against Hypoxia-induced Pulmonary Hypertension 
Rationale: Pulmonary hypertension (PH) is a progressive disease with unclear etiology. The significance of autophagy in PH remains unknown.
Objectives: To determine the mechanisms by which autophagic proteins regulate tissue responses during PH.
Methods: Lungs from patients with PH, lungs from mice exposed to chronic hypoxia, and human pulmonary vascular cells were examined for autophagy using electron microscopy and Western analysis. Mice deficient in microtubule-associated protein-1 light chain-3B (LC3B−/−), or early growth response-1 (Egr-1−/−), were evaluated for vascular morphology and hemodynamics.
Measurements and Main Results: Human PH lungs displayed elevated lipid-conjugated LC3B, and autophagosomes relative to normal lungs. These autophagic markers increased in hypoxic mice, and in human pulmonary vascular cells exposed to hypoxia. Egr-1, which regulates LC3B expression, was elevated in PH, and increased by hypoxia in vivo and in vitro. LC3B−/− or Egr-1−/−, but not Beclin 1+/−, mice displayed exaggerated PH during hypoxia. In vitro, LC3B knockdown increased reactive oxygen species production, hypoxia-inducible factor-1α stabilization, and hypoxic cell proliferation. LC3B and Egr-1 localized to caveolae, associated with caveolin-1, and trafficked to the cytosol during hypoxia.
Conclusions: The results demonstrate elevated LC3B in the lungs of humans with PH, and of mice with hypoxic PH. The increased susceptibility of LC3B−/− and Egr-1−/− mice to hypoxia-induced PH and increased hypoxic proliferation of LC3B knockdown cells suggest adaptive functions of these proteins during hypoxic vascular remodeling. The results suggest that autophagic protein LC3B exerts a protective function during the pathogenesis of PH, through the regulation of hypoxic cell proliferation.
PMCID: PMC3081281  PMID: 20889906
autophagy; hypoxia; hypertension, pulmonary
21.  Carbon monoxide prevents ventilator induced lung injury via caveolin-1 
Critical care medicine  2009;37(5):1708-1715.
Carbon monoxide (CO) can confer anti-inflammatory protection in rodent models of ventilator-induced lung injury (VILI). Caveolin-1 exerts a critical role in cellular responses to mechanical stress, and has been shown to mediate cytoprotective effects of CO in vitro. We sought to determine the role of caveolin-1 in lung susceptibility to VILI in mice. Furthermore, we assessed the role of caveolin-1 in the tissue protective effects of CO in the VILI model.
Prospective experimental study
University laboratory
Wild type (wt) and caveolin-1 deficient (cav-−/−) mice
Mice were subjected to tracheostomy and arterial cannulation. Wt and cav-1−/− mice were ventilated with a tidal volume of 12 ml/kg body weight and a frequency of 80/min for 5 min as control, or for 8h with air in the absence or presence of CO (250 parts per million). Bronchoalveolar lavage (BAL) and histology were used to determine lung injury. Lung sections or homogenates were analyzed for caveolin-1 expression by immunohistochemical staining or Western Blotting, respectively.
Measurements and Main Results
Ventilation led to an increase in BAL protein concentration, cell count, neutrophil recruitment, and edema formation that was prevented in the presence of CO. While ventilation alone slightly induced caveolin-1 expression in epithelial cells, the application of CO during the ventilation significantly increased the expression of caveolin-1. In comparison to wt mice, mechanical ventilation of cav-1−/− mice led to a significantly higher degree of lung injury as compared to wt mice. In contrast to its effectiveness in wt mice, CO-administration failed to reduce lung injury markers in cav-1−/− mice.
Caveolin-1 null mice are more susceptible to VILI. Carbon monoxide executes lung protective effects during mechanical ventilation that are dependent in part, on caveolin-1 expression.
PMCID: PMC3086639  PMID: 19325477
ventilator induced lung injury; mechanical ventilation; carbon monoxide; caveolin-1; mechanotransduction; acute lung injury
22.  Heme Oxygenase-1, a Critical Arbitrator of Cell Death Pathways in Lung Injury and Disease 
Increases in cell death by programmed (ie., apoptosis, autophagy) or non-programmed mechanisms (ie., necrosis) occur during tissue injury, and may contribute to the etiology of several pulmonary or vascular disease states. The low molecular weight stress protein heme oxygenase-1 (HO-1) confers cytoprotection against cell death in various models of lung and vascular injury by inhibiting apoptosis, inflammation, and cell proliferation. HO-1 serves a vital metabolic function as the rate-limiting step in the heme degradation pathway and in the maintenance of iron homeostasis. The transcriptional induction of HO-1 occurs in response to multiple forms of chemical and physical cellular stress. The cytoprotective functions of HO-1 may be attributed to heme turnover, as well as to beneficial properties of its enzymatic reaction products: biliverdin-IXα, iron, and carbon monoxide (CO). Recent studies have demonstrated that HO-1 or CO inhibits stress-induced extrinsic and intrinsic apoptotic pathways in vitro. A variety of signaling molecules have been implicated in the cytoprotection conferred by HO-1/CO, including autophagic proteins, p38 mitogen activated protein kinase, signal transducer and activator of transcription proteins, nuclear factor-κB, phosphatydylinositol-3-kinase/Akt, and others. Enhanced HO-1 expression or the pharmacological application of HO end-products affords protection in preclinical models of tissue injury, including experimental and transplant-associated ischemia/reperfusion injury, promising potential future therapeutic applications.
PMCID: PMC3078523  PMID: 19362144
23.  Autophagy in the Lung 
Autophagy is a cellular process for the disposal of damaged organelles or denatured proteins through a lysosomal degradation pathway. By reducing endogenous macromolecules to their basic components (i.e., amino acids, lipids), autophagy serves a homeostatic function by ensuring cell survival during starvation. Increased autophagy can be found in dying cells, although the relationships between autophagy and programmed cell death remain unclear. To date, few studies have examined the regulation and functional significance of autophagy in human lung disease. The lung, a complex organ that functions primarily in gas exchange, consists of diverse cell types (i.e., endothelial, epithelial, mesenchymal, inflammatory). In lung cells, autophagy may represent a general inducible adaptive response to injury resulting from exposure to stress agents, including hypoxia, oxidants, inflammation, ischemia–reperfusion, endoplasmic reticulum stress, pharmaceuticals, or inhaled xenobiotics (i.e., air pollution, cigarette smoke). In recent studies, we have observed increased autophagy in mouse lungs subjected to chronic cigarette smoke exposure, and in pulmonary epithelial cells exposed to cigarette smoke extract. Knockdown of autophagic proteins inhibited apoptosis in response to cigarette smoke exposure in vitro, suggesting that increased autophagy was associated with epithelial cell death. We have also observed increased morphological and biochemical markers of autophagy in human lung specimens from patients with chronic obstructive pulmonary disease (COPD). We hypothesize that increased autophagy contributes to COPD pathogenesis by promoting epithelial cell death. Further research will examine whether autophagy plays a homeostatic or maladaptive role in COPD and other human lung diseases.
PMCID: PMC3137145  PMID: 20160144
autophagy; apoptosis; pulmonary disease
24.  Autophagy in Vascular Disease 
Autophagy, or “self eating,” refers to a regulated cellular process for the lysosomal-dependent turnover of organelles and proteins. During starvation or nutrient deficiency, autophagy promotes survival through the replenishment of metabolic precursors derived from the degradation of endogenous cellular components. Autophagy represents a general homeostatic and inducible adaptive response to environmental stress, including endoplasmic reticulum stress, hypoxia, oxidative stress, and exposure to pharmaceuticals and xenobiotics. Whereas elevated autophagy can be observed in dying cells, the functional relationships between autophagy and programmed cell death pathways remain incompletely understood. Preclinical studies have identified autophagy as a process that can be activated during vascular disorders, including ischemia–reperfusion injury of the heart and other organs, cardiomyopathy, myocardial injury, and atherosclerosis. The functional significance of autophagy in human cardiovascular disease pathogenesis remains incompletely understood, and potentially involves both adaptive and maladaptive outcomes, depending on model system. Although relatively few studies have been performed in the lung, our recent studies also implicate a role for autophagy in chronic lung disease. Manipulation of the signaling pathways that regulate autophagy could potentially provide a novel therapeutic strategy in the prevention or treatment of human disease.
PMCID: PMC3137148  PMID: 20160147
autophagy; apoptosis; vascular disease
25.  Carbon Monoxide Modulates α–Smooth Muscle Actin and Small Proline Rich-1a Expression in Fibrosis 
Carbon monoxide (CO) is a biologically active molecule produced in the body by the stress-inducible enzyme, heme oxygenase. We have previously shown that CO suppresses fibrosis in a murine bleomycin model. To investigate the mechanisms by which CO opposes fibrogenesis, we performed gene expression profiling of fibroblasts treated with transforming growth factor-β1 and CO. The most highly differentially expressed categories of genes included those related to muscular system development and the small proline-rich family of proteins. We confirmed in vitro, and in an in vivo bleomycin model of lung fibrosis, that CO suppresses α–smooth muscle actin expression and enhances small proline-rich protein-1a expression. We further show that these effects of CO depend upon signaling via the extracellular signal–regulated kinase pathway. Our results demonstrate novel transcriptional targets for CO and further elucidate the mechanism by which CO suppresses fibrosis.
PMCID: PMC2701963  PMID: 19097987
carbon monoxide; heme oxygenase-1; lung fibrosis; small proline-rich protein; α-smooth muscle actin

Results 1-25 (48)