PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy 
European journal of immunology  2013;43(5):1333-1344.
Legionella pneumophila (L. pneumophila) is an intracellular bacterium of human alveolar macrophages that causes Legionnaires' disease. In contrast to humans, most inbred mouse strains are restrictive to L. pneumophila replication. We demonstrate that autophagy targets L. pneumophila vacuoles to lysosomes and that this process requires ubiquitination of L. pneumophila vacuoles and the subsequent binding of the autophagic adaptor p62/SQSTM1 to ubiquitinated vacuoles. The L. pneumophila legA9 encodes for an ankyrin-containing protein with unknown role. We show that the legA9 mutant is the first L. pneumophila mutant to replicate in wild-type (WT) mice and their bone marrow derived macrophages (BMDMs). Less legA9 mutant- containing vacuoles acquired ubiquitin labeling and p62/SQSTM1 staining, evading autophagy uptake and avoiding lysosomal fusion. Thus, we describe a bacterial protein that targets the L. pneumophila -containing vacuole for autophagy uptake.
doi:10.1002/eji.201242835
PMCID: PMC3782291  PMID: 23420491
Autophagy; Ubiquitination; Lysosomes; Trafficking; Macrophage
2.  EXAGGERATED INFLAMMATORY RESPONSES MEDIATED BY BURKHOLDERIA CENOCEPACIA IN HUMAN MACROPHAGES DERIVED FROM CYSTIC FIBROSIS 
Cystic Fibrosis (CF) is accompanied with heightened inflammation worsened by drug resistant Burkholderia cenocepacia. Human CF macrophage responses to B. cenocepacia are poorly characterized and variable in the literature. Therefore, we examined human macrophage responses to the epidemic B. cenocepacia J2315 strain in order to identify novel anti-inflammatory targets. Peripheral blood monocyte derived macrophages were obtained from 23 CF and 27 non-CF donors. Macrophages were infected with B. cenocepacia J2315 and analyzed for cytokines, cytotoxicity, and microscopy. CF macrophages demonstrated significant increases in IL-1β, IL-10, MCP-1, and IFN-γ production in comparison to non-CF controls. CF patients on prednisone exhibited globally diminished cytokines compared to controls and other CF patients. CF macrophages also displayed increased bacterial burden and cell death. In conclusion, CF macrophages demonstrate exaggerated IL-1β, IL-10, MCP-1, and IFN-γ production and cell death during B. cenocepacia infection. Treatment with corticosteroids acutely suppressed cytokine responses.
doi:10.1016/j.bbrc.2012.06.066
PMCID: PMC3408781  PMID: 22728038
cystic fibrosis; burkholderia; macrophage; IL-1β; corticosteroids
3.  Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization 
Immunity  2012;37(1):35-47.
Summary
Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins. Yet, its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and 5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila- vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing non-pathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.
doi:10.1016/j.immuni.2012.05.001
PMCID: PMC3408798  PMID: 22658523
4.  Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages 
Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.
doi:10.3389/fcimb.2013.00018
PMCID: PMC3664316  PMID: 23750338
biofilm; inflammasome; flagellin; caspase-1; Legionella pneumophila; innate immunity
5.  Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis 
Autophagy  2011;7(11):1359-1370.
Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR ΔF508 (ΔF508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1β. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in ΔF508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-ΔF508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and ΔF508 macrophages. However, autophagy dysfunction is more pronounced in ΔF508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagystimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
doi:10.4161/auto.7.11.17660
PMCID: PMC3359483  PMID: 21997369
autophagy; rapamycin; cystic fibrosis; host-pathogen interaction; Burkholderia cenocepacia; inflammation; macrophages
6.  Asc-Dependent and Independent Mechanisms Contribute to Restriction of Legionella Pneumophila Infection in Murine Macrophages 
The apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) is an adaptor molecule that mediates inflammatory and apoptotic signals. Legionella pneumophila is an intracellular bacterium and the causative agent of Legionnaire's pneumonia. L. pneumophila is able to cause pneumonia in immuno-compromised humans but not in most inbred mice. Murine macrophages that lack the ability to activate caspase-1, such as caspase-1−/− and Nlrc4−/− allow L. pneumophila infection. This permissiveness is attributed mainly to the lack of active caspase-1 and the absence of its down stream substrates such as caspase-7. However, the role of Asc in control of L. pneumophila infection in mice is unclear. Here we show that caspase-1 is moderately activated in Asc−/− macrophages and that this limited activation is required and sufficient to restrict L. pneumophila growth. Moreover, Asc-independent activation of caspase-1 requires bacterial flagellin and is mainly detected in cellular extracts but not in culture supernatants. We also demonstrate that the depletion of Asc from permissive macrophages enhances bacterial growth by promoting L. pneumophila-mediated activation of the NF-κB pathway and decreasing caspase-3 activation. Taken together, our data demonstrate that L. pneumophila infection in murine macrophages is controlled by several mechanisms: Asc-independent activation of caspase-1 and Asc-dependent regulation of NF-κB and caspase-3 activation.
doi:10.3389/fmicb.2011.00018
PMCID: PMC3112328  PMID: 21713115
inflammasome; caspase-1; Legionella pneumophila; Asc
7.  Apoptosis-associated Speck-like Protein (ASC) Controls Legionella pneumophila Infection in Human Monocytes* 
The Journal of Biological Chemistry  2010;286(5):3203-3208.
The ability of Legionella pneumophila to cause pneumonia is determined by its capability to evade the immune system and grow within human monocytes and their derived macrophages. Human monocytes efficiently activate caspase-1 in response to Salmonella but not to L. pneumophila. The molecular mechanism for the lack of inflammasome activation during L. pneumophila infection is unknown. Evaluation of the expression of several inflammasome components in human monocytes during L. pneumophila infection revealed that the expression of the apoptosis-associated speck-like protein (ASC) and the NOD-like receptor NLRC4 are significantly down-regulated in human monocytes. Exogenous expression of ASC maintained the protein level constant during L. pneumophila infection and conveyed caspase-1 activation and restricted the growth of the pathogen. Further depletion of ASC with siRNA was accompanied with improved NF-κB activation and enhanced L. pneumophila growth. Therefore, our data demonstrate that L. pneumophila manipulates ASC levels to evade inflammasome activation and grow in human monocytes. By targeting ASC, L. pneumophila modulates the inflammasome, the apoptosome, and NF-κB pathway simultaneously.
doi:10.1074/jbc.M110.197681
PMCID: PMC3030324  PMID: 21097506
Caspase; Cellular Immune Response; Immunology; Inflammation; Innate Immunity; ASC; Legionella; NOD-like Receptors; Human Monocytes; Inflammasome

Results 1-7 (7)