PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Towards Robot Scientists for autonomous scientific discovery 
We review the main components of autonomous scientific discovery, and how they lead to the concept of a Robot Scientist. This is a system which uses techniques from artificial intelligence to automate all aspects of the scientific discovery process: it generates hypotheses from a computer model of the domain, designs experiments to test these hypotheses, runs the physical experiments using robotic systems, analyses and interprets the resulting data, and repeats the cycle. We describe our two prototype Robot Scientists: Adam and Eve. Adam has recently proven the potential of such systems by identifying twelve genes responsible for catalysing specific reactions in the metabolic pathways of the yeast Saccharomyces cerevisiae. This work has been formally recorded in great detail using logic. We argue that the reporting of science needs to become fully formalised and that Robot Scientists can help achieve this. This will make scientific information more reproducible and reusable, and promote the integration of computers in scientific reasoning. We believe the greater automation of both the physical and intellectual aspects of scientific investigations to be essential to the future of science. Greater automation improves the accuracy and reliability of experiments, increases the pace of discovery and, in common with conventional laboratory automation, removes tedious and repetitive tasks from the human scientist.
doi:10.1186/1759-4499-2-1
PMCID: PMC2813846  PMID: 20119518
2.  Introduction of shared electronic records: multi-site case study using diffusion of innovation theory 
Objective To explore the introduction of a centrally stored, shared electronic patient record (the summary care record (SCR)) in England and draw wider lessons about the implementation of large scale information technology projects in health care.
Design Multi-site, mixed method case study applying utilisation focused evaluation.
Setting Four early adopter sites for the SCR in England—three in urban areas of relative socioeconomic deprivation and the fourth in a relatively affluent rural area.
Data sources and analysis Data included 250 staff interviews, 1500 hours of ethnographic observation, interviews and focus groups with 170 patients and carers, 2500 pages of correspondence and documentary evidence, and incorporation of relevant surveys and statistics produced by others. These were analysed by using a thematic approach drawing on (and extending) a theoretical model of complex change developed in a previous systematic review.
Main findings The mixed fortunes of the SCR programme in its first year were largely explained by eight interacting influences. The first was the SCR’s material properties (especially technical immaturity and lack of interoperability) and attributes (especially the extent to which potential adopters believed the benefits outweighed the risks). The second was adopters’ concerns (especially about workload and the ethicality of sharing “confidential” information on an implied consent model). The third influence was interpersonal influence (for example, opinion leaders, champions, facilitators), and the fourth was organisational antecedents for innovation (for example past experience with information technology projects, leadership and management capacity, effective data capture systems, slack resources). The fifth was organisational readiness for the SCR (for example, innovation-system fit, tension for change, power balances between supporters and opponents, baseline data quality). The sixth was the implementation process (including the nature of the change model and the extent to which new routines associated with the SCR aligned with existing organisational routines). The seventh influence was the nature and quality of links between different parts of the system, and the final one was the wider environment (especially the political context of the programme).
Conclusion Shared electronic records are not plug-in technologies. They are complex innovations that must be accepted by individual patients and staff and also embedded in organisational and inter-organisational routines. This process is heavily influenced at the micro-level by the material properties of the technology, individuals’ attitudes and concerns, and interpersonal influence; at the meso-level by organisational antecedents, readiness, and operational aspects of implementation; and at the macro-level by institutional and socio-political forces. A case study approach and multi-level theoretical analysis can illuminate how contextual factors shape, enable, and constrain new, technology supported models of patient care.
doi:10.1136/bmj.a1786
PMCID: PMC3269664  PMID: 18948344

Results 1-2 (2)