Search tips
Search criteria

Results 1-25 (77)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Development of a nanoparticle-assisted PCR (nanoPCR) assay for detection of mink enteritis virus (MEV) and genetic characterization of the NS1 gene in four Chinese MEV strains 
Mink enteritis virus (MEV) causes mink viral enteritis, an acute and highly contagious disease whose symptoms include violent diarrhea, and which is characterized by high morbidity and mortality. Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a recently developed technique for the rapid detection of bacterial and viral DNA. Here we describe a novel nanoPCR assay for the clinical detection and epidemiological characterization of MEV.
This assay is based upon primers specific for the conserved region of the MEV NS1 gene, which encodes nonstructural protein 1. Under optimized conditions, the MEV nanoPCR assay had a detection limit of 8.75 × 101 copies recombinant plasmids per reaction, compared with 8.75 × 103 copies for conventional PCR analysis. Moreover, of 246 clinical mink samples collected from five provinces in North-Eastern China, 50.8% were scored MEV positive by our nanoPCR assay, compared with 32.5% for conventional PCR. Furthermore no cross reactivity was observed for the nanoPCR assay with respect to related viruses, including canine distemper virus (CDV) and Aleutian mink disease parvovirus (AMDV). Phylogenetic analysis of four Chinese wild type MEV isolates using the nanoPCR assay indicated that they belonged to a small MEV clade, named “China type”, in the MEV/FPLV cluster, and were closely clustered in the same location.
Our results indicate that the MEV China type clade is currently circulating in domestic minks in China. We anticipate that the nanoPCR assay we have described here will be useful for the detection and epidemiological and pathological characterization of MEV.
Electronic supplementary material
The online version of this article (doi:10.1186/s12917-014-0312-6) contains supplementary material, which is available to authorized users.
PMCID: PMC4300173  PMID: 25582057
Nanoparticle-assisted PCR; Mink enteritis virus; Nonstructural protein 1 gene; Genetic characterization; China type
2.  Urinary Nerve Growth Factor Could Be a Biomarker for Interstitial Cystitis/Painful Bladder Syndrome: A Meta-Analysis 
PLoS ONE  2014;9(9):e106321.
To examine whether urinary nerve growth factor (NGF) could serve as a biomarker for interstitial cystitis/painful bladder syndrome (IC/PBS), we conducted a comprehensive meta-analysis of 9 studies. Among the studies considered, patients with IC/PBS had higher urinary NGF and NGF/Cr levels compared to those of healthy people (SMD = 1.94, 95%CI = 0.79–3.08, P = 0.0009 and SMD = 1.79, 95%CI = 0.65–2.93, P = 0.002, respectively). In addition, there was a significant difference between patients with IC/PBS and patients with overactive bladder (OAB) symptoms with respect to the urinary NGF and NGF/Cr levels (SMD = −0.62, 95%CI = −1.00–−0.24, P = 0.001 and SMD = −0.70, 95%CI = −1.01–−0.39, P<0.0001, respectively). Furthermore, patients had a significantly lower urinary NGF level after successful treatment (SMD = 1.74, 95%CI = 0.32–3.17, P = 0.02). In conclusion, urinary NGF could be a useful biomarker for the diagnosis of OAB, a urinary biomarker for the differential diagnosis of IC/PBS and OAB (when a critical urinary NGF or NGF/Cr level is needed), and a predictive biomarker to help guide treatment.
PMCID: PMC4152268  PMID: 25181532
3.  BDNF–ERK–CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice 
Although previous study has demonstrated that brain-derived neurotrophic factor (BDNF) is involved in the antidepressant-like effect of oleanolic acid, there is little information regarding the details of the molecular mechanism involved in this effect.
We used a chronic unpredictable mild stress (CUMS) model to test the antidepressant-like effect of oleanolic acid on depressant-like behaviour, miR-132 expression and synaptic protein expression in the male mouse hippocampus. Furthermore, we explored the possible signalling pathways associated with miR-132 expression that mediate the effect of oleanolic acid on neuronal proliferation.
The results demonstrated that a 3-week treatment with oleanolic acid ameliorated CUMS-induced anhedonic and anxiogenic behaviours. Furthermore, we found that oleanolic acid led to the BDNF-related phosphorylation and activation of extracellular signal-regulated kinases (ERK) and cyclic adenosine monophosphate response element binding protein (CREB), which was associated with the upregulation of miR-132 and hippocampal neuronal proliferation. Moreover, experiments with an miR-132 antagomir revealed that targeting miR-132 led to inhibition of neuronal proliferation and the postsynaptic density protein 95, but did not affect presynaptic protein synapsin I.
Several other stimuli can also induce CREB phosphorylation in the hippocampus. Thus, regulation of miR-132 may not be restricted to neurotrophic signalling.
Our results show that oleanolic acid induces the upregulation of miR-132, which serves as an important regulator of neurotrophic actions, mainly through the activation of the hippocampal BDNF–ERK–CREB signalling pathways.
PMCID: PMC4160364  PMID: 25079084
4.  Comparison of primary target volumes delineated on four-dimensional CT and 18 F-FDG PET/CT of non-small-cell lung cancer 
To determine the optimal threshold of 18 F-fluorodexyglucose (18 F-FDG) positron emission tomography CT (PET/CT) images that generates the best volumetric match to internal gross target volume (IGTV) based on four-dimensional CT (4DCT) images.
Twenty patients with non-small cell lung cancer (NSCLC) underwent enhanced three-dimensional CT (3DCT) scan followed by enhanced 4DCT scan of the thorax under normal free breathing with the administration of intravenous contrast agents. A total of 100 ml of ioversol was injected intravenously, 2 ml/s for 3DCT and 1 ml/s for 4DCT. Then 18 F-FDG PET/CT scan was performed based on the same positioning parameters (the same immobilization devices and identical position verified by laser localizer as well as skin marks). Gross target volumes (GTVs) of the primary tumor were contoured on the ten phases images of 4DCT to generate IGTV10. GTVPET were determined with eight different threshold using an auto-contouring function. The differences in the position, volume, concordance index (CI) and degree of inclusion (DI) of the targets between GTVPET and IGTV10 were compared.
The images from seventeen patients were suitable for further analysis. Significant differences between the centric coordinate positions of GTVPET (excluding GTVPET15%) and IGTV10 were observed only in z axes (P < 0.05). GTVPET15%, GTVPET25% and GTVPET2.0 were not statistically different from IGTV10 (P < 0.05). GTVPET15% approximated closely to IGTV10 with median percentage volume changes of 4.86%. The best CI was between IGTV10 and GTVPET15% (0.57). The best DI of IGTV10 in GTVPET was IGTV10 in GTVPET15% (0.80).
None of the PET-based contours had both close spatial and volumetric approximation to the 4DCT IGTV10. At present 3D-PET/CT should not be used for IGTV generation.
PMCID: PMC4150978  PMID: 25123450
Non-small cell lung cancer; Fluorodeoxyglucose positron emission tomography; Four-dimensional computed tomography; Standardized uptake value
5.  Gene Targeting of Mutant COL1A2 Alleles in Mesenchymal Stem Cells From Individuals With Osteogenesis Imperfecta 
Mesenchymal stem cells (MSCs) are adult cells with the capacity to differentiate into multiple cell types, including bone, fat, cartilage, and muscle cells. In order to effectively utilize autologous MSCs in cell-based therapies, precise genetic manipulations are required to eliminate the effects of disease-causing mutations. We previously used adeno-associated virus (AAV) vectors to target and inactivate mutant COL1A1 genes in MSCs from individuals with the brittle bone disorder, osteogenesis imperfecta (OI). Here we have used AAV vectors to inactivate mutant COL1A2 genes in OI MSCs, thereby demonstrating that both type I collagen genes responsible for OI can be successfully targeted. We incorporated improved vector designs so as to minimize the consequences of random integration, facilitate the removal of potential antigens, and avoid unwanted exon skipping. MSCs targeted at mutant COL1A2 alleles produced normal type I procollagen and formed bone, thereby demonstrating their therapeutic potential.
PMCID: PMC4128632  PMID: 17955022
6.  Nickel(II) Complex of Polyhydroxybenzaldehyde N4-Thiosemicarbazone Exhibits Anti-Inflammatory Activity by Inhibiting NF-κB Transactivation 
PLoS ONE  2014;9(6):e100933.
The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.
Methodology/Principal Findings
Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.
Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.
PMCID: PMC4076215  PMID: 24977407
7.  Pharmacokinetics of BPA in Gliomas with Ultrasound Induced Blood-Brain Barrier Disruption as Measured by Microdialysis 
PLoS ONE  2014;9(6):e100104.
The blood-brain barrier (BBB) can be transiently disrupted by focused ultrasound (FUS) in the presence of microbubbles for targeted drug delivery. Previous studies have illustrated the pharmacokinetics of drug delivery across the BBB after sonication using indirect visualization techniques. In this study, we investigated the in vivo extracellular kinetics of boronophenylalanine-fructose (BPA-f) in glioma-bearing rats with FUS-induced BBB disruption by microdialysis. After simultaneous intravenous administration of BPA and FUS exposure, the boron concentration in the treated brains was quantified by inductively coupled plasma mass spectroscopy. With FUS, the mean peak concentration of BPA-f in the glioma dialysate was 3.6 times greater than without FUS, and the area under the concentration-time curve was 2.1 times greater. This study demonstrates that intracerebral microdialysis can be used to assess local BBB transport profiles of drugs in a sonicated site. Applying microdialysis to the study of metabolism and pharmacokinetics is useful for obtaining selective information within a specific brain site after FUS-induced BBB disruption.
PMCID: PMC4061112  PMID: 24936788
8.  Evaluation of cytotoxic and chemotherapeutic properties of boldine in breast cancer using in vitro and in vivo models 
To date, plants have been the major source of anticancer drugs. Boldine is a natural alkaloid commonly found in the leaves and bark of Peumus boldus. In this study, we found that boldine potently inhibited the viability of the human invasive breast cancer cell lines, MDA-MB-231 (48-hour IC50 46.5±3.1 μg/mL) and MDA-MB-468 (48-hour IC50 50.8±2.7 μg/mL). Boldine had a cytotoxic effect and induced apoptosis in breast cancer cells as indicated by a higher amount of lactate dehydrogenase released, membrane permeability, and DNA fragmentation. In addition, we demonstrated that boldine induced cell cycle arrest at G2/M phase. The anticancer mechanism is associated with disruption of the mitochondrial membrane potential and release of cytochrome c in MDA-MB-231. Boldine selectively induced activation of caspase-9 and caspase-3/7, but not caspase-8. We also found that boldine could inhibit nuclear factor kappa B activation, a key molecule in tumor progression and metastasis. In addition, protein array and Western blotting analysis showed that treatment with boldine resulted in downregulation of Bcl-2 and heat shock protein 70 and upregulation of Bax in the MDA-MB-231 cell line. An acute toxicity study in rats revealed that boldine at a dose of 100 mg/kg body weight was well tolerated. Moreover, intraperitoneal injection of boldine (50 or 100 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that boldine is a potentially useful agent for the treatment of breast cancer.
PMCID: PMC4057328  PMID: 24944509
boldine; breast cancer; caspase cascade; Bcl-2/Bax; heat shock protein 70; nuclear factor kappa B
9.  Mapping Brain Injury with Symmetrical-channels' EEG Signal Analysis – A Pilot Study 
Scientific Reports  2014;4:5023.
A technique for detecting brain injury at the bedside has great clinical value, but conventional imaging techniques (such as computed tomography [CT] and magnetic resonance imaging) are impractical. In this study, a novel method–the symmetrical channel electroencephalogram (EEG) signal analysis–was developed for this purpose. The study population consisted of 45 traumatic brain injury patients and 10 healthy controls. EEG signals in resting and stimulus states were acquired, and approximate entropy (ApEn) and slow-wave coefficient were extracted to calculate the ratio values of ApEn and SWC for injured and uninjured areas. Statistical analyses showed that the ratio values for both ApEn and SWC between injured and uninjured brain areas differed significantly (P < 0.05) for both resting and name call stimulus states. A set of criteria (range of ratio values) to determine whether a brain area is injured or uninjured was proposed and its reliability was verified by statistical analyses and CT images.
PMCID: PMC4028679  PMID: 24846704
10.  Hydrochemistry of the Hot Springs in Western Sichuan Province Related to the Wenchuan MS 8.0 Earthquake 
The Scientific World Journal  2014;2014:901432.
Hydrogeochemistry of 32 hot springs in the western Sichuan Province after the Wenchuan MS 8.0 earthquake was investigated by analyzing the concentrations of cation and anion and the isotopic compositions of hydrogen and oxygen. The water samples of the hot springs were collected four times from June 2008 to April 2010. Hydrogeochemical data indicated the water samples can be classified into 9 chemical types. Values of δD and δ18O indicated that the spring waters were mainly derived from meteoric precipitation and affected by water-rock interaction and mixture of deep fluids. Concentrations of K+and SO4− of the samples from the Kangding district exhibited evident increases before the Wenchuan earthquake, indicating more supplement of deep fluids under the increase of tectonic stress. The chemical and isotopic variations of the water samples from the area closer to the epicenter area can be attributed to variation of regional stress field when the aftershock activities became weak.
PMCID: PMC4032713  PMID: 24892106
11.  Persea declinata (Bl.) Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation 
Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.
PMCID: PMC3997877  PMID: 24808916
12.  Evidence That the Heme Regulatory Motifs in Heme Oxygenase-2 Serve as a Thiol/Disulfide Redox Switch Regulating Heme Binding*s 
The Journal of biological chemistry  2007;282(29):21056-21067.
Heme oxygenase (HO) catalyzes the O2- and NADPH-dependent conversion of heme to biliverdin, CO, and iron. The two forms of HO (HO-1 and HO-2) share similar physical properties but are differentially regulated and exhibit dissimilar physiological roles and tissue distributions. Unlike HO-1, HO-2 contains heme regulatory motifs (HRMs) (McCoubrey, W. K., Jr., Huang, T. J., and Maines, M. D. (1997) J. Biol. Chem. 272, 12568–12574). Here we describe UV-visible, EPR, and differential scanning calorimetry experiments on human HO-2 variants containing single, double, and triple mutations in the HRMs. Oxidized HO-2, which contains an intramolecular disulfide bond linking Cys265 of HRM1 and Cys282 of HRM2, binds heme tightly. Reduction of the disulfide bond increases the Kd for ferric heme from 0.03 to 0.3 μm, which is much higher than the concentration of the free heme pool in cells. Although the HRMs markedly affect the Kd for heme, they do not alter the kcat for heme degradation and do not bind additional hemes. Because HO-2 plays a key role in CO generation and heme homeostasis, reduction of the disulfide bond would be expected to increase intracellular free heme and decrease CO concentrations. Thus, we propose that the HRMs in HO-2 constitute a thiol/disulfide redox switch that regulates the myriad physiological functions of HO-2, including its involvement in the hypoxic response in the carotid body, which involves interactions with a Ca2+-activated potassium channel.
PMCID: PMC3957417  PMID: 17540772
13.  Characterization and Functional Analysis of AatB, a Novel Autotransporter Adhesin and Virulence Factor of Avian Pathogenic Escherichia coli 
Infection and Immunity  2013;81(7):2437-2447.
Autotransporter (AT) proteins constitute a large family of extracellular proteins that contribute to bacterial virulence. A novel AT adhesin gene, aatB, was identified in avian pathogenic Escherichia coli (APEC) DE205B via genomic analyses. The open reading frame of aatB was 1,017 bp, encoding a putative 36.3-kDa protein which contained structural motifs characteristic for AT proteins: a signal peptide, a passenger domain, and a translocator domain. The predicted three-dimensional structure of AatB consisted of two distinct domains, the C-terminal β-barrel translocator domain and an N-terminal passenger domain. The prevalence analyses of aatB in APEC indicated that aatB was detected in 26.4% (72/273) of APEC strains and was strongly associated with phylogenetic groups D and B2. Quantitative real-time reverse transcription-PCR analyses revealed that AatB expression was increased during infection in vitro and in vivo. Moreover, AatB could elicit antibodies in infected ducks, suggesting that AatB is involved in APEC pathogenicity. Thus, APEC DE205B strains with a mutated aatB gene and mutated strains complemented with the aatB gene were constructed. Inactivation of aatB resulted in a reduced capacity to adhere to DF-1 cells, defective virulence capacity in vivo, and decreased colonization capacity in lung during systemic infection compared with the capacities of the wild-type strain. Furthermore, these capacities were restored in the complementation strains. These results indicated that AatB makes a significant contribution to APEC virulence through bacterial adherence to host tissues in vivo and in vitro. In addition, biofilm formation assays with strain AAEC189 expressing AatB indicated that AatB mediates biofilm formation.
PMCID: PMC3697619  PMID: 23630958
14.  A non-invasive, rapid method to genotype late-onset Alzheimer's disease-related apolipoprotein E gene polymorphisms 
Neural Regeneration Research  2014;9(1):69-75.
The apolipoprotein E gene ε4 allele is considered a negative factor for neural regeneration in late-onset Alzheimer's disease cases. The aim of this study was to establish a non-invasive, rapid method to genotype apolipoprotein E gene polymorphisms. Genomic DNA from mouth swab specimens was extracted using magnetic nanoparticles, and genotyping was performed by real-time PCR using TaqMan-BHQ probes. Genotyping accuracy was validated by DNA sequencing. Our results demonstrate 100% correlation to DNA sequencing, indicating reliability of our protocol. Thus, the method we have developed for apolipoprotein E genotyping is accurate and reliable, and also suitable for genotyping large samples, which may help determine the role of the apolipoprotein E ε4 allele in neural regeneration in late-onset Alzheimer's disease cases.
PMCID: PMC4146311  PMID: 25206745
nerve regeneration; neurodegeneration; late-onset Alzheimer's disease; apolipoprotein E gene; real-time PCR; DNA sequencing; risk factor; allele; neural regeneration
15.  MicroRNA-217 Promotes Angiogenesis of Human Cytomegalovirus-Infected Endothelial Cells through Downregulation of SIRT1 and FOXO3A 
PLoS ONE  2013;8(12):e83620.
Human cytomegalovirus(HCMV) infection has been shown to contribute to vascular disease through the induction of angiogenesis. However, the role of microRNA in angiogenesis induced by HCMV infection remains unclear. The present study was thus designed to explore the potential effect of miR-1217 on angiogenesis and to disclose the underlying mechanism in endothelial cells. We found that HCMV infection of endothelial cells(ECs) enhanced expression of miR-217 and reduced SIRT1 and FOXO3A protein level in 24 hours post infection(hpi). Transfection of miR-217 inhibitor not only depressed cellular migration and tube formation induced by HCMV infection, but also enhanced SIRT1 and FOXO3A protein expression. Additionally, luciferase assay confirmed that miR-217 directly targeted FOXO3A mRNA 3`UTR. Furthermore, pretreatment with resveratrol depressed motility and tube formation of HCMV-infected ECs, which could be reversed by SIRT1 siRNA. Similarly, delivery of FOXO3A overexpression lentivirus suppressed proliferative rate, migration and tube formation of HCMV-infected ECs, which reversed by transfection of FOXO3A siRNA. In summary, HCMV infection of endothelial cells induces angiogenesis by both of miR-217/SIRT1 and miR-217/FOXO3A axis.
PMCID: PMC3869804  PMID: 24376725
17.  The Cardioprotective Effect of Hypertonic Saline Is Associated with Inhibitory Effect on Macrophage Migration Inhibitory Factor in Sepsis 
BioMed Research International  2013;2013:201614.
Sepsis can cause myocardial dysfunction, which contributes to the high mortality of sepsis. Hypertonic saline (HS) has been reported to increase myocardial contractility in sepsis. In the present study, mechanisms of action of HS resuscitation (4 mL of 7.5% NaCl per kilogram) on cardiac function have been evaluated in septic rats. HS was administered 1 h after LPS (10 mg/kg, i.v.) challenge. The mean arterial blood pressure significantly decreased 4 h after LPS challenge, and septic shock was observed at the end of experiment (6 h). Posttreatment with HS prevented hypotension caused by LPS and significantly improved cardiac function, evidenced by increases in left ventricular developed pressure, mean +dP/dt and −dP/dt. The amplitude of electrical-stimulated intracellular Ca2+ transient in isolated single cardiomyocytes was significantly reduced after 6 h LPS insult, which was recovered by HS. In addition, LPS resulted in significant increases in neutrophil myeloperoxidase activity, macrophage migration inhibitory factor (MIF), and NF-κB phospho-p65 protein levels in myocardium at 6 h, which were significantly attenuated by HS. In conclusion, HS improved myocardial contractility and prevented circulatory failure induced by endotoxemia, which may attribute to improvement of intracellular calcium handling process and inhibitory effects on neutrophil infiltration and MIF production in hearts.
PMCID: PMC3858963  PMID: 24371817
18.  A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients 
Neural Regeneration Research  2013;8(32):3036-3046.
C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is a risk factor for stroke, suggesting that widespread detection could help to prevent stroke. DNA from 70 stroke patients and 70 healthy controls was extracted from saliva using a magnetic nanoparticles-based method and from blood using conventional methods. Real-time PCR results revealed that the C677T polymorphism was genotyped by PCR using DNA extracted from both saliva and blood samples. The genotype results were confirmed by gene sequencing, and results for saliva and blood samples were consistent. The mutation TT genotype frequency was significantly higher in the stroke group than in controls. Homocysteine levels were significantly higher than controls in both TT genotype groups. Therefore, this noninvasive magnetic nanoparticles-based method using saliva samples could be used to screen for the MTHFR C677T polymorphism in target populations.
PMCID: PMC4146207  PMID: 25206624
neural regeneration; brain injury; stroke; magnetic nanoparticles; saliva; methylenetetrahydrofolate reductase; homocysteine; gene polymorphism; gene screening; grants-supported paper; neuroregeneration
19.  Overexpression of luxS Cannot Increase Autoinducer-2 Production, Only Affect the Growth and Biofilm Formation in Streptococcus suis 
The Scientific World Journal  2013;2013:924276.
LuxS/AI-2 quorum sensing (QS) system involves the production of cell signaling molecules via luxS-based autoinducer-2 (AI-2). LuxS has been reported to plays critical roles in regulating various behaviors of bacteria. AI-2 is a byproduct of the catabolism of S-adenosylhomocysteine (SAH) performed by the LuxS and Pfs enzymes. In our previous study, the function of LuxS in AI-2 production was verified in Streptococcus suis (SS). Decreased levels of SS biofilm formation and host-cell adherence as well as an inability to produce AI-2 were observed in bacteria having a luxS mutant gene. In this study, the level of AI-2 activity exhibits a growth-phase dependence with a maximum in late exponential culture in SS. An SS strain that overexpressed luxS was constructed to comprehensively understand the function of AI-2. Overexpressed luxS was not able to increase the level of pfs expression and produce additional AI-2, and the bacteria were slower growing and produced only slightly more biofilm than the wild type. Thus, AI-2 production is not correlated with luxS transcription. luxS expression is constitutive, but the transcription of pfs is perhaps correlated with AI-2 production in SS.
PMCID: PMC3842066  PMID: 24324385
20.  MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines 
Cell Research  2013;23(11):1270-1283.
The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases.
PMCID: PMC3817544  PMID: 23979021
micorRNA-124; cholinergic anti-inflammatory action; α7nAChR; macrophages; septic shock; STAT3; TACE
21.  The Impact of Down Syndrome Screening on Taiwanese Down Syndrome Births: A Nationwide Retrospective Study and a Screening Result from a Single Medical Centre 
PLoS ONE  2013;8(9):e75428.
A retrospective analysis of the Taiwanese National Birth Defect Registration and Notification System was conducted in order to determine the live birth- and stillbirth rates in infants with Down syndrome, trisomy 18, trisomy 13 and Turner syndrome between 2001 and 2010. The objective was to investigate the impact of Down syndrome screening on the Taiwanese Down syndrome live birth rate. In addition, the results of first-trimester Down syndrome screening between 2006 and 2011, and of second-trimester quadruple testing between 2008 and 2011, were obtained from the National Taiwan University Hospital. All Taiwanese infants born between 2001 and 2010 were included in the first part of the analysis, and women receiving first-trimester Down syndrome screening or second-trimester quadruple testing from the National Taiwan University Hospital were included in the second part. The live birth rate of infants with Down syndrome, per 100 000 live births, decreased from 22.28 in 2001 to 7.79 in 2010. The ratio of liveborn DS to total DS was 48.74% in 2001, and then decreased to 25.88% in 2006, when first-trimester screening was widely introduced in Taiwan. This ratio dropped to 20.64% in 2008, when the second-trimester quadruple test was implemented. The overall positive rate in first-trimester screening in the National Taiwan University Hospital was 3.1%, with a Down syndrome detection rate of 100%; the quadruple test had values of 9.0% and 75%, respectively. The use of first-trimester screening and the second-trimester quadruple test may be responsible for the marked decrease in the Taiwanese Down syndrome live birth rate observed between 2001 and 2010.
PMCID: PMC3798710  PMID: 24147155
22.  Abnormality in face scanning by children with autism spectrum disorder is limited to the eye region: Evidence from multi-method analyses of eye tracking data 
Journal of Vision  2013;13(10):5.
There has been considerable controversy regarding whether children with autism spectrum disorder (ASD) and typically developing children (TD) show different eye movement patterns when processing faces. We investigated ASD and age- and IQ-matched TD children's scanning of faces using a novel multi-method approach. We found that ASD children spent less time looking at the whole face generally. After controlling for this difference, ASD children's fixations of the other face parts, except for the eye region, and their scanning paths between face parts were comparable either to the age-matched or IQ-matched TD groups. In contrast, in the eye region, ASD children's scanning differed significantly from that of both TD groups: (a) ASD children fixated significantly less on the right eye (from the observer's view); (b) ASD children's fixations were more biased towards the left eye region; and (c) ASD children fixated below the left eye, whereas TD children fixated on the pupil region of the eye. Thus, ASD children do not have a general abnormality in face scanning. Rather, their abnormality is limited to the eye region, likely due to their strong tendency to avoid eye contact.
PMCID: PMC3739407  PMID: 23929830
autism spectrum disorder; face processing; face recognition; eye movements; eye tracking
23.  Molecular Characterization of Streptococcus agalactiae Isolated from Bovine Mastitis in Eastern China 
PLoS ONE  2013;8(7):e67755.
One hundred and two Streptococcus agalactiae (group B streptococcus [GBS]) isolates were collected from dairy cattle with subclinical mastitis in Eastern China during 2011. Clonal groups were established by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), respectively. Capsular polysaccharides (CPS), pilus and alpha-like-protein (Alp) family genes were also characterized by molecular techniques. MLST analysis revealed that these isolates were limited to three clonal groups and were clustered in six different lineages, i.e. ST (sequence type) 103, ST568, ST67, ST301, ST313 and ST570, of which ST568 and ST570 were new genotypes. PFGE analysis revealed this isolates were clustered in 27 PFGE types, of which, types 7, 8, 14, 15, 16, 18, 23 and 25 were the eight major types, comprising close to 70% (71/102) of all the isolates. The most prevalent sequence types were ST103 (58% isolates) and ST568 (31% isolates), comprising capsular genotype Ia isolates without any of the detected Alp genes, suggesting the appearance of novel genomic backgrounds of prevalent strains of bovine S. agalactiae. All the strains possessed the pilus island 2b (PI-2b) gene and the prevalent capsular genotypes were types Ia (89% isolates) and II (11% isolates), the conserved pilus type providing suitable data for the development of vaccines against mastitis caused by S. agalactiae.
PMCID: PMC3707890  PMID: 23874442
24.  Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways 
Centratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called “Kayakalp”, commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved.
A chloroform fraction was extracted from C. anthelminticum (CACF). Bioactive compounds of the CACF were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human melanoma cell line A375 was treated with CACF in vitro. Effects of CACF on growth inhibition, morphology, stress and survival of the cell were examined with MTT, high content screening (HSC) array scan and flow cytometry analyses. Involvement of intrinsic or extrinsic pathways in the CACF-induced A375 cell death mechanism was examined using a caspase luminescence assay. The results were further verified with different caspase inhibitors. In addition, Western blot analysis was performed to elucidate the changes in apoptosis-associated molecules. Finally, the effect of CACF on the NF-κB nuclear translocation ability was assayed.
The MTT assay showed that CACF dose-dependently inhibited cell growth of A375, while exerted less cytotoxic effect on normal primary epithelial melanocytes. We demonstrated that CACF induced cell growth inhibition through apoptosis, as evidenced by cell shrinkage, increased annexin V staining and formation of membrane blebs. CACF treatment also resulted in higher reactive oxygen species (ROS) production and lower Bcl-2 expression, leading to decrease mitochondrial membrane potential (MMP). Disruption of the MMP facilitated the release of mitochondrial cytochrome c, which activates caspase-9 and downstream caspase-3/7, resulting in DNA fragmentation and up-regulation of p53 in melanoma cells. Moreover, CACF prevented TNF-α-induced NF-κB nuclear translocation, which further committed A375 cells toward apoptosis.
Together, our findings suggest CACF as a potential therapeutic agent against human melanoma malignancy.
PMCID: PMC3718627  PMID: 23837445
Centratherum anthelminticum; Melanoma; Caspase cascade; Apoptosis; Bcl-2; p53; NF-κB
25.  Downregulation of KLF8 expression by shRNA induces inhibition of cell proliferation in CAL27 human oral cancer cells 
Objectives: KLF8 is a member of KLF transcription factors which play an important tolr in oncogenesis. It is barely expressed in normal human epithelial cells but highly overexpressed in several types of human cancer cell lines. In the present study, we investigate the role of KLF8 in oral cancer and the effects of KLF8 knockdown via lentivirus mediated siRNA infection in human adenosquamos carcinoma CAL 27 cells. Study Design: We developed a vector-based siRNA expression system that can induce RNAi in CAL 27 oral cancer cells. Downregulation of KLF8 was confirmed by evaluating GFP expressions, RT-PCR and western blot analysis. Finally, the effects of KLF8 downregulation were analyzed by MTT assay and colony formation assays. Results: The expression levels of KLF8 mRNA and proteins are reduced in CAL 27 cells that transfected with 21-nt siRNA against KLF8. Lentivirus-mediated silencing of KLF8 reduces cell proliferation and colonies number, thereby indicating the role of KLF8 in cell proliferation and tumorigenesis. Conclusions: These results strongly suggest that KLF8 is essential for growth of CAL 27 cancer cells. A better understanding of KLF8 function and processing may provide novel insights into the clinical therapy of oral cancer.
Key words:KLF8, lentivirus, CAL 27, oral cancer, cell proliferation.
PMCID: PMC3731086  PMID: 23722127

Results 1-25 (77)