Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects 
Neurology  2013;81(17):1492-1499.
In this multicenter cohort study, we sought to identify prognostic and associative metabolic indicators for HIV-associated neurocognitive disorders (HAND).
A quantitative lipidomic analysis was conducted on 524 longitudinal CSF samples collected from 7 different performance sites across the mainland United States, Hawaii, and Puerto Rico. Subjects included HIV-infected individuals with longitudinal clinical and cognitive testing data and cognitively normal HIV-negative healthy controls.
At baseline, HIV+ subjects could be differentiated from HIV− controls by reductions in a single ceramide species and increases in multiple forms of cholesterol. Perturbations in cholesterol metabolism and ceramide were influenced by combined antiretroviral therapy (cART) use. There were no cross-sectional baseline differences in any lipid metabolite when HIV+ subjects were grouped according to cognitive status. However, a single sphingolipid metabolite and reduced levels of esterified cholesterols were prognostic indicators of incident cognitive decline. Longitudinal patterns of these disturbances in sphingolipid and sterol metabolism suggest that a progressive disorder of lipid metabolism that is similar to disorders of lipid storage may contribute to the pathogenesis of HAND.
These findings suggest that HIV infection and cART are independently associated with a CNS metabolic disturbance, identify surrogate markers that are prognostic for cognitive decline, and implicate a lipid storage–like disorder in the progression of HAND.
PMCID: PMC3888167  PMID: 24027056
The Lancet. Neurology  2012;11(12):1048-1056.
We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-β (Aβ) plaque deposition.
Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF Aβ1-42, total tau and phospho-tau181 levels, and plasma Aβ1-42 levels and Aβ1-42/Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests.
The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological test scores, or proportion of apolipoprotein E (APOE) ε4 carriers. Compared to the non-carriers, carriers had higher CSF Aβ1-42 levels (p=0·008), plasma Aβ1-42 levels (p=0·01), and plasma Aβ1-42/Aβ1-40 ratios (p=0·001), consistent with Aβ1-42 overproduction. They also had greater hippocampal/parahippocampal activations (as low as p=0·008, after correction for multiple comparisons), less precuneus/posterior cingulate deactivations (as low as p=0·001, after correction), less gray matter in several regions (p-values <0·005, uncorrected, and corrected p=0·008 in the parietal search region), similar to findings in the later preclinical and clinical stages of autosomal dominant and late-onset AD.
Young adults at genetic risk for autosomal dominant AD have functional and structural MRI abnormalities, along with CSF and plasma biomarker findings consistent with Aβ1-42 over-production. While the extent to which the underlying brain changes are progressive or developmental remain to be determined, this study demonstrates the earliest known biomarker changes in cognitively normal people at genetic risk for autosomal dominant AD.
Banner Alzheimer’s Foundation, Nomis Foundation, Anonymous Foundation, Forget Me Not Initiative, Boston University Department of Psychology, Colciencias (1115-408-20512, 1115-545-31651), National Institute on Aging (R01 AG031581, P30 AG19610, UO1 AG024904, RO1 AG025526, RF1AG041705), National Institute of Neurological Disorders and Stroke (F31-NS078786) and state of Arizona.
PMCID: PMC4181671  PMID: 23137948
Alzheimer’s disease; biomarkers; preclinical; early-onset; dominantly inherited; MRI; functional MRI; cerebrospinal fluid; plasma; presenilin E280A mutation; amyloid; tau; genetics; prevention
3.  Molecular programming of endothelin-1 in HIV-infected brain: role of Tat in up-regulation of ET-1 and its inhibition by statins 
Human Immune Deficiency Virus-1 (HIV-1) infection can induce severe and debilitating neurological problems, including behavioral abnormalities, motor dysfunction, and dementia. HIV can persistently infect astrocytes, during which viral accessory proteins are produced that are unaffected by current antiretroviral therapy. The effect of these proteins on astrocyte function remains unknown. Astrocytes are the predominant cells within the brain; thus, disruption of astrocyte function could influence the neuropathogenesis of HIV infection. To explore further these effects, we constitutively expressed HIV-Tat protein in astrocytes. Since the nuclear presence of Tat protein leads to alteration of host gene expression, we further analyzed the effects of Tat on host gene transcripts. Endothelin-1 (ET-1) was a significantly elevated transcript as verified by reverse transcription-polymerase chain reaction (RT-PCR), and it was subsequently released extracellularly in Tat-expressing and HIV-infected astrocytes. ET-1 expression was also prominent in reactive astrocytes and neurons in brain tissues from basal ganglia and frontal lobes of HIV encephalitic patients. HIV-Tat regulated ET-1 at the transcriptional level through NF-κB (NF-κB)-responsive sites in the ET-1 promoter. Intriguingly, simvastatin (10 µM) down-regulated HIV-Tat-induced ET-1 and also inhibited activation of NF-κB in astrocytes. Our findings suggest that ET-1 may be critical in mediating the neuropathogenesis of HIV dementia and that statins may have therapeutic potential in these patients.
PMCID: PMC4179467  PMID: 17197385
HIV-neuropathogenesis; nuclear Tat; ET-1 transcriptional regulation; NF-κB; simvastatin
4.  Response to Rotenone Is Glucose-Sensitive in a Model of Human Acute Lymphoblastic Leukemia: Involvement of Oxidative Stress Mechanism, DJ-1, Parkin, and PINK-1 Proteins 
To establish the effect of low (11 mM) and high (55 mM) glucose concentrations (G11, G55) on Jurkat cells exposed to rotenone (ROT, a class 5 mitocan). We demonstrated that ROT induces apoptosis in Jurkat cells cultured in G11 by oxidative stress (OS) mechanism involving the generation of anion superoxide radical (O2∙−, 68%)/hydrogen peroxide (H2O2, 54%), activation of NF-κB (32%), p53 (25%), c-Jun (17%) transcription factors, and caspase-3 (28%), apoptosis-inducing factor (AIF, 36%) nuclei translocation, c-Jun N-terminal kinase (JNK) activation, and loss of mitochondria transmembrane potential (ΔΨm, 62%) leading to nuclei fragmentation (~10% and ~40% stage I-II fragmented nuclei, resp.). ROT induces massive cytoplasmic aggregates of DJ-1 (93%), and upregulation of Parkin compared to untreated cells, but no effect on PINK-1 protein was observed. Cell death marker detection and DJ-1 and Parkin expression were significantly reduced when cells were cultured in G55 plus ROT. Remarkably, metformin sensitized Jurkat cells against ROT in G55. Our results indicate that a high-glucose milieu promotes resistance against ROT/H2O2-induced apoptosis in Jurkat cells. Our data suggest that combined therapy by using mitochondria-targeted damaging compounds and regulation of glucose (e.g., metformin) can efficiently terminate leukemia cells via apoptosis in hyperglycemic conditions.
PMCID: PMC4037627
5.  Dmp53, basket and drICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson’s disease model 
Genetics and Molecular Biology  2013;36(4):608-615.
Understanding the mechanism(s) by which dopaminergic (DAergic) neurons are eroded in Parkinson’s disease (PD) is critical for effective therapeutic strategies. By using the binary tyrosine hydroxylase (TH)-Gal4/UAS-X RNAi Drosophila melanogaster system, we report that Dmp53, basket and drICE gene knockdown in dopaminergic neurons prolong life span (p < 0.05; log-rank test) and locomotor activity (p < 0.05; χ2 test) in D. melanogaster lines chronically exposed to (1 mM) paraquat (PQ, oxidative stress (OS) generator) compared to untreated transgenic fly lines. Likewise, knockdown flies displayed higher climbing performance than control flies. Amazingly, gallic acid (GA) significantly protected DAergic neurons, ameliorated life span, and climbing abilities in knockdown fly lines treated with PQ compared to flies treated with PQ only. Therefore, silencing specific gene(s) involved in neuronal death might constitute an excellent tool to study the response of DAergic neurons to OS stimuli. We propose that a therapy with antioxidants and selectively “switching off” death genes in DAergic neurons could provide a means for pre-clinical PD individuals to significantly ameliorate their disease condition.
PMCID: PMC3873193  PMID: 24385865
Basket; Dmp53; Drice; Drosophila; paraquat
6.  PML-IRIS in a patient treated with brentuximab 
Neurology  2012;79(20):2075-2077.
A 38-year-old woman was diagnosed with cutaneous anaplastic T-cell lymphoma that proved refractory to methotrexate, bexarotene, denileukin diftitox, interferon γ-1b, interferon α-2b, vorinostat, and pralatrexate. She was therefore started on the newly approved monoclonal anti-CD30 antibody brentuximab vedotin. Treatment with brentuximab 1.8 mg/kg IV every 3 weeks quickly led to disappearance of her cutaneous tumors. The day after her second brentuximab infusion she developed word-finding difficulties and unsteady gait. Due to further neurologic deterioration, she was admitted to an outside hospital. Brain MRI revealed multifocal enhancing white matter lesions throughout bilateral cerebral hemispheres and posterior fossa (figure, A–C). Brain biopsy was performed 15 days after her last brentuximab dose to rule out metastases and she was diagnosed with progressive multifocal leukoencephalopathy (PML) (figure, J). The patient was discharged home with hospice care. Upon discharge, she was started on prednisone 50 mg daily to help treat her eczema. Her family brought her to our clinic for a second opinion.
PMCID: PMC3511922  PMID: 23115213
7.  Expression of CCR7 and CD45RA in CD4+ and CD8+ subsets in cerebrospinal fluid of 134 patients with inflammatory and non-inflammatory neurological diseases 
Journal of Neuroimmunology  2012;249(1-2):86-92.
We investigated CD45RA and CCR7 expression in CD4+ and CD8+ subsets of cerebrospinal fluid (CSF) lymphocytes, both immediately ex vivo and after stimulation, from 134 patients with a variety of inflammatory and non-inflammatory neurological diseases. Most inflammatory diseases had a higher CD4+: CD8+ ratio and higher percentage of effector memory T cells (TEM) than non-inflammatory controls, excluding active infection. Moreover, we found that patients with highly elevated cell counts in the CSF tended to have a lower percentage of central memory T cells (TCM) than patients with low or absent pleiocytosis, with a concomitant increase in TEM. We also found that samples with elevated IgG index or presence of oligoclonal bands had a significantly higher CD4+:CD8+ ratio than normal samples, consistent with increased CD4+ help for intrathecal IgG synthesis by B cells.
PMCID: PMC3391349  PMID: 22633193
CSF; T lymphocytes; effector memory T cells; immunoglobulin; multiple sclerosis
8.  Global NeuroAIDS Roundtable 
Journal of neurovirology  2013;19(1):1-9.
In May 2012, the Division of AIDS Research at the National Institute of Mental Health (NIMH) organized the “Global NeuroAIDS Roundtable” in conjunction with the 11th International Symposium on Neurovirology and the 2012 Conference on HIV in the Nervous System. The meeting was held in New York, NY, USA and brought together NIMH-funded investigators who are currently working on projects related to the neurological complications of AIDS (NeuroAIDS) in Africa, Asia, Eastern Europe, and Latin America in order to provide an opportunity to share their recent findings and discuss the challenges encountered within each country. The major goals of the roundtable were to evaluate HIV-associated neurocognitive impairment and determine if it may be directly attributable to distinct HIV subtypes or clades and to discuss the future priorities for global NeuroAIDS research. At the “Global NeuroAIDS Roundtable”, presentations of preliminary research indicated that HIV-associated neurocognitive impairment is prevalent in all countries examined regardless of which HIV clade is present in the region. The only clear-cut difference between HIV-1 clades was in relation to subtypes A and D in Uganda. However, a key point that emerged from the discussions was that there is an urgent need to standardize neurocognitive assessment methodologies across the globe before definitive conclusions can be drawn regarding the relationship between HIV clade diversity and neuropathogenesis. Future research directions were also discussed at the roundtable with particular emphasis on the potential of viral and host factor molecular interactions to impact the pathophysiology of HIV-associated neurocognitive disorders (HAND) from a global perspective.
PMCID: PMC3713197  PMID: 23354550
Human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2); Acquired immunodeficiency syndrome (AIDS); HIV clade; NeuroAIDS; HIV-associated neurocognitive disorders (HAND); Neuropathogenesis
9.  A pilot open-label trial of minocycline in patients with autism and regressive features 
Minocycline is a tetracycline derivative that readily crosses the blood brain barrier and appears to have beneficial effects on neuroinflammation, microglial activation and neuroprotection in a variety of neurological disorders. Both microglial activation and neuroinflammation have been reported to be associated with autism. The study was designed to evaluate the effects of minocycline treatment on markers of neuroinflammation and autism symptomatology in children with autism and a history of developmental regression.
Eleven children were enrolled in an open-label trial of six months of minocycline (1.4 mg/kg). Ten children completed the trial. Behavioral measures were collected and cerebrospinal fluid (CSF), serum and plasma were obtained before and at the end of minocycline treatment and were analyzed for markers of neuroinflammation.
Clinical improvements were negligible. The laboratory assays demonstrated significant changes in the expression profile of the truncated form of brain derived neurotrophic factor (BDNF) (P = 0.042) and hepatic growth factor (HGF) (P = 0.028) in CSF. In serum, the ratio of the truncated BDNF form and α-2 macroglobulin (α-2 M), was also significantly lower (P = 0.028) while the mature BDNF/α-2 M ratio revealed no difference following treatment. Only the chemokine CXCL8 (IL-8) was significantly different (P = 0.047) in serum while no significant changes were observed in CSF or serum in chemokines such as CCL2 (MCP-1) or cytokines such as TNF-α, CD40L, IL-6, IFN-γ and IL-1β when pre- and post-treatment levels of these proteins were compared. No significant pre- and post-treatment changes were seen in the profiles of plasma metalloproteinases, putative targets of the effects of minocycline.
Changes in the pre- and post-treatment profiles of BDNF in CSF and blood, HGF in CSF and CXCL8 (IL-8) in serum, suggest that minocycline may have effects in the CNS by modulating the production of neurotrophic growth factors. However, in this small group of children, no clinical improvements were observed during or after the six months of minocycline administration.
Trial registration
PMCID: PMC3663771  PMID: 23566357
Autism; Minocycline; Microglia; Neuroinflammation; Clinical trial; Cytokines; Chemokines; Metalloproteinases; Neurotrophins; BDNF
10.  TPEN Induces Apoptosis Independently of Zinc Chelator Activity in a Model of Acute Lymphoblastic Leukemia and Ex Vivo Acute Leukemia Cells through Oxidative Stress and Mitochondria Caspase-3- and AIF-Dependent Pathways 
Acute lymphoblastic leukemia is still an incurable disease with resistance to therapy developing in the majority of patients. We investigated the effect of TPEN, an intracellular zinc chelator, in Jurkat and in ex vivo acute lymphoblastic leukemia (ALL) cells resistant to chemotherapy. Changes of nuclei morphology, reactive oxygen species generation, presence of hypodiploid cells, phosphatidylserine translocation, mitochondrial membrane depolarization, immunohistochemical identification of cell death signalling molecules, and pharmacological inhibition were assayed to detect the apoptotic cell death pathways. We found that TPEN induces apoptosis in both types of cells by a molecular oxidative stress pathway involving O2•− > H2O2 ≫ NF-κB (JNK/c-Jun) >p53> loss ΔΨm> caspase-3, AIF > chromatin condensation/DNA fragmentation. Interestingly, TPEN induced apoptosis independently of glucose; leukemic cells are therefore devoid of survival capacity by metabolic resistance to treatment. Most importantly, TPEN cytotoxic effect can eventually be regulated by the antioxidant N-acetyl-cysteine and zinc ions. Our data suggest that TPEN can be used as a potential therapeutic prooxidant agent against refractory leukemia. These data contribute to understanding the importance of oxidative stress in the treatment of ALL.
PMCID: PMC3540963  PMID: 23320127
11.  Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS 
Brain  2011;134(11):3209-3221.
Distal sensory polyneuropathy is a frequent complication of lentivirus infections of the peripheral nervous system including both human immunodeficiency virus and feline immunodeficiency virus. Proteinase-activated receptors are G protein-coupled receptors implicated in the pathogenesis of neuroinflammation and neurodegeneration. Proteinase-activated receptor-1 is expressed on different cell types within the nervous system including neurons and glia, but little is known about its role in the pathogenesis of inflammatory peripheral nerve diseases, particularly lentivirus-related distal sensory polyneuropathy. Herein, the expression and functions of proteinase-activated receptor-1 in the peripheral nervous system during human immunodeficiency virus and feline immunodeficiency virus infections were investigated. Proteinase-activated receptor-1 expression was most evident in autopsied dorsal root ganglion neurons from subjects infected with human immunodeficiency virus, compared with the dorsal root ganglia of uninfected subjects. Human immunodeficiency virus or feline immunodeficiency virus infection of cultured human or feline dorsal root ganglia caused upregulation of interleukin-1β and proteinase-activated receptor-1 expression. In the human immunodeficiency virus- or feline immunodeficiency virus-infected dorsal root ganglia, interleukin-1β activation was principally detected in macrophages, while neurons showed induction of proteinase-activated receptor-1. Binding of proteinase-activated receptor-1 by the selective proteinase-activated receptor-1-activating peptide resulted in neurite retraction and soma atrophy in conjunction with cytosolic calcium activation in human dorsal root ganglion neurons. Interleukin-1β exposure to feline or human dorsal root ganglia caused upregulation of proteinase-activated receptor-1 in neurons. Exposure of feline immunodeficiency virus-infected dorsal root ganglia to the interleukin-1 receptor antagonist prevented proteinase-activated receptor-1 induction and neurite retraction. In vivo feline immunodeficiency virus infection was associated with increased proteinase-activated receptor-1 expression on neurons and interleukin-1β induction in macrophages. Moreover, feline immunodeficiency virus infection caused hyposensitivity to mechanical stimulation. These data indicated that activation and upregulation of proteinase-activated receptor-1 by interleukin-1β contributed to dorsal root ganglion neuronal damage during lentivirus infections leading to the development of distal sensory polyneuropathy and might also provide new targets for future therapeutic interventions.
PMCID: PMC3212716  PMID: 22021895
PAR1; HIV; FIV; dorsal root ganglion; IL-1β
12.  Autism: Where Genetics Meets the Immune System 
Autism Research and Treatment  2012;2012:486359.
PMCID: PMC3440848  PMID: 22988503
13.  The Bad, the Good, and the Ugly about Oxidative Stress 
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer.
PMCID: PMC3350994  PMID: 22619696
14.  Osteopontin enhances HIV replication and is increased in the brain and cerebrospinal fluid of HIV-infected individuals 
Journal of Neurovirology  2011;17(4):382-392.
Despite effective and widely available suppressive anti-HIV therapy, the prevalence of mild neurocognitive dysfunction continues to increase. HIV-associated neurocognitive disorder (HAND) is a multifactorial disease with sustained central nervous system inflammation and immune activation as prominent features. Inflammatory macrophages, HIV-infected and uninfected, play a central role in the development of HIV dementia. There is a critical need to identify biomarkers and to better understand the molecular mechanisms leading to cognitive dysfunction in HAND. In this regard, we identified through a subtractive hybridization strategy osteopontin (OPN, SPP1, gene) an inflammatory marker, as an upregulated gene in HIV-infected primary human monocyte-derived macrophages. Knockdown of OPN in primary macrophages resulted in a threefold decrease in HIV-1 replication. Ectopic expression of OPN in the TZM-bl cell line significantly enhanced HIV infectivity and replication. A significant increase in the degradation of the NF-κB inhibitor, IκBα and an increase in the nuclear-to-cytoplasmic ratio of NF-κB were found in HIV-infected cells expressing OPN compared to controls. Moreover, mutation of the NF-κB binding domain in the HIV-LTR abrogated enhanced promoter activity stimulated by OPN. Interestingly, compared to cerebrospinal fluid from normal and multiple sclerosis controls, OPN levels were significantly higher in HIV-infected individuals both with and without neurocognitive disorder. OPN levels were highest in HIV-infected individuals with moderate to severe cognitive impairment. Moreover, OPN was significantly elevated in brain tissue from HIV-infected individuals with cognitive disorder versus those without impairment. Collectively, these data suggest that OPN stimulates HIV-1 replication and that high levels of OPN are present in the CNS compartment of HIV-infected individuals, reflecting ongoing inflammatory processes at this site despite anti-HIV therapy.
PMCID: PMC3331788  PMID: 21556958
HIV-associated neurocognitive disorder; CD44; Nef
15.  FLT-3 Expression and Function on Microglia in Multiple Sclerosis 
Inflammatory cell infiltration and resident microglial activation within the central nervous system (CNS) are pathological events in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). While MS therapies target the peripheral immune system, no treatment is currently known to also modulate microglia. FMS-like tyrosine-3 (FLT-3) is expressed on hematopoietic and dendritic cells. We reported that FLT-3 inhibition ameliorates early actively induced EAE by predominantly modulating dendritic cell function as compared to microglia. We demonstrate in this report that FLT-3 is expressed in perivascular cuffs, brain parenchyma and in non-lesioned gray and white matter within MS brain but not in these regions within control brain. Furthermore, we demonstrate that FLT-3 is expressed on two populations of cells within MS brain; one which expresses the dendritic cell marker CD209, and the other which does not, suggesting that FLT-3 within MS brain is expressed on infiltrating dendritic cells and a non-dendritic cell such as microglia. Additionally, we report that FLT-3 inhibition in murine microglia blocks, in a dose dependent manner, IFN-γ-induced expression of MHC class II and CD86, and LPS-induced secretion of IL-6. These data suggest that FLT-3 is involved in microglial cell’s capacity to respond to environmental cues to function as antigen presenting cells and mediate CNS inflammation. Furthermore these data suggest that FLT-3 may be a therapeutic target on microglia to mitigate CNS inflammation.
PMCID: PMC2939189  PMID: 20566414
16.  Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism 
Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia.
It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively.
We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.
PMCID: PMC3127817  PMID: 21663679
17.  Interactions between human immunodeficiency virus (HIV)-1 Vpr expression and innate immunity influence neurovirulence 
Retrovirology  2011;8:44.
Viral diversity and abundance are defining properties of human immunodeficiency virus (HIV)-1's biology and pathogenicity. Despite the increasing availability of antiretroviral therapy, HIV-associated dementia (HAD) continues to be a devastating consequence of HIV-1 infection of the brain although the underlying disease mechanisms remain uncertain. Herein, molecular diversity within the HIV-1 non-structural gene, Vpr, was examined in RNA sequences derived from brain and blood of HIV/AIDS patients with or without HIV-associated dementia (HAD) together with the ensuing pathobiological effects.
Cloned brain- and blood-derived full length vpr alleles revealed that amino acid residue 77 within the brain-derived alleles distinguished HAD (77Q) from non-demented (ND) HIV/AIDS patients (77R) (p < 0.05) although vpr transcripts were more frequently detected in HAD brains (p < 0.05). Full length HIV-1 clones encoding the 77R-ND residue induced higher IFN-α, MX1 and BST-2 transcript levels in human glia relative to the 77Q-HAD encoding virus (p < 0.05) but both viruses exhibited similar levels of gene expression and replication. Myeloid cells transfected with 77Q-(pVpr77Q-HAD), 77R (pVpr77R-ND) or Vpr null (pVpr(-))-containing vectors showed that the pVpr77R-ND vector induced higher levels of immune gene expression (p < 0.05) and increased neurotoxicity (p < 0.05). Vpr peptides (amino acids 70-96) containing the 77Q-HAD or 77R-ND motifs induced similar levels of cytosolic calcium activation when exposed to human neurons. Human glia exposed to the 77R-ND peptide activated higher transcript levels of IFN-α, MX1, PRKRA and BST-2 relative to 77Q-HAD peptide (p < 0.05). The Vpr 77R-ND peptide was also more neurotoxic in a concentration-dependent manner when exposed to human neurons (p < 0.05). Stereotaxic implantation of full length Vpr, 77Q-HAD or 77R-ND peptides into the basal ganglia of mice revealed that full length Vpr and the 77R-ND peptide caused greater neurobehavioral deficits and neuronal injury compared with 77Q-HAD peptide-implanted animals (p < 0.05).
These observations underscored the potent neuropathogenic properties of Vpr but also indicated viral diversity modulates innate neuroimmunity and neurodegeneration.
PMCID: PMC3123635  PMID: 21645334
18.  Converging roles for sphingolipids and cell stress in the progression of neurological dysfunction in AIDS 
Sphingolipids are a class of lipids enriched in the central nervous system that have important roles in signal transduction. Recent advances in our understanding of how sphingolipids are involved in the control of life and death signaling have uncovered roles for these lipids in the neuropathogenesis of HIV-associated neurocognitive disorders (HAND). In this review we briefly summarize the molecular mechanisms involved in the pathological production of the toxic sphingolipid, ceramide and address questions of how cytokine and cellular stress pathways that are perturbed in HAND converge to deregulate ceramide-associated signaling.
PMCID: PMC2739118  PMID: 18508574
19.  Protease Activated Receptor Signaling Is Required for African Trypanosome Traversal of Human Brain Microvascular Endothelial Cells 
Using human brain microvascular endothelial cells (HBMECs) as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB) we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain). In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs) known as protease activated receptors (PARs) that might be implicated in calcium signaling by African trypanosomes.
Methodology/Principal Findings
Using RNA interference (RNAi) we found that in vitro PAR-2 gene (F2RL1) expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%–49%) and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Gαq with Pasteurella multocida toxin (PMT). PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain) and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified.
Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Gαq-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.
Author Summary
Human African trypanosomiasis, or sleeping sickness, occurs when single-cell trypanosome protozoan parasites spread from the blood to brain over the blood-brain barrier (BBB). This barrier is composed of brain microvascular endothelial cells (BMECs) especially designed to keep pathogens out. Safe drugs for treating sleeping sickness are lacking and alternative treatments are urgently required. Using our human BMEC BBB model, we previously found that a parasite protease, brucipain, induced calcium activation signals that allowed this barrier to open up to parasite crossing. Because human BMECs express protease-activated receptors (PARs) that trigger calcium signals in BMECs, we hypothesized a functional link between parasite brucipain and BMEC PARs. Utilizing RNA interference to block the production of one type of PAR called PAR-2, we hindered the ability of trypanosomes to both open up and cross human BMECs. Using gene-profiling methods to interrogate candidate BMEC pathways specifically triggered by brucipain, several pathways that potentially link brain inflammatory processes were identified, a finding congruent with the known role of PAR-2 as a mediator of inflammation. Overall, our data support a role for brucipain and BMEC PARs in trypanosome BBB transmigration, and as potential triggers for brain inflammation associated with the disease.
PMCID: PMC2707606  PMID: 19621073
20.  Improving neurological outcomes post-cardiac arrest in a rat model: immediate hypothermia and quantitative EEG monitoring 
Resuscitation  2007;76(3):431-442.
Therapeutic hypothermia (TH) after cardiac arrest (CA) improves outcomes in a fraction of patients. To enhance the administration of TH, we studied brain electrophysiological monitoring in determining the benefit of early initiation of TH compared to conventional administration in a rat model.
Using an asphyxial CA model, we compared the benefit of immediate hypothermia (IH, T=33°C, immediately post-resuscitation, maintained 6 hours) to conventional hypothermia (CH, T=33°C, starting 1 hour post-resuscitation, maintained 12 hours) via surface cooling. We tracked quantitative EEG using relative entropy (qEEG) with outcome verification by serial Neurological Deficit Score (NDS) and quantitative brain histopathological damage scoring (HDS). Thirty-two rats were divided into 4 groups based on CH/IH and 7/9-minute duration of asphyxial CA. Four sham rats were included for evaluation of the effect of hypothermia on qEEG.
The 72-hour NDS of the IH group was significantly better than the CH group for both 7-minute (74/63; Median, IH/CH, p<0.001) and 9-minute (54/47, p=0.022) groups. qEEG showed greater recovery with IH (p<0.001) and significantly less neuronal cortical injury by HDS (IH: 18.9±2.5% versus CH: 33.2±4.4%, p=0.006). The 1-hour post-resuscitation qEEG correlated well with 72-hour NDS (p<0.05) and 72-hour behavioral subgroup of NDS (p<0.01). No differences in qEEG were noted in the sham group.
Immediate but shorter hypothermia compared to CH leads to better functional outcome in rats after 7- and 9- minute CA. The beneficial effect of IH was readily detected by neuro-electrophysiological monitoring and histological changes supported the value of this observation.
PMCID: PMC2323440  PMID: 17936492
Cardiac arrest; Electroencephalography; Hypothermia; Functional outcome; Brain ischemia
21.  Differential effects of HIV infected macrophages on dorsal root ganglia neurons and axons 
Experimental neurology  2007;210(1):30-40.
Human immunodeficiency virus-associated distal-symmetric neuropathy (HIV-DSP) is the most common neurological complication of HIV infection. The pathophysiology of HIV-DSP is poorly understood and no treatment is available for this entity. The dorsal root ganglia (DRG) are the principal sites of neuronal damage and are associated with reactive mononuclear phagocytes as well as HIV-infected macrophages. To determine the role of HIV-infected macrophages in the pathogenesis of HIV-DSP, we developed a technique for culturing human DRG’s. When the dissociated DRG neurons were exposed to supernatants from macrophages infected with CXCR4 or CCR5 tropic HIV-1 strains axonal retraction was observed without neuronal cell death but there was mitochondrial dysfunction in the neuronal cell body. Even though CXCR4 and CCR5 were expressed on the DRG neurons, the effects were independent of these receptors. Antioxidants rescued the neuronal cell body but not the axon from the toxic effects of the culture supernatants. Further, peripheral nerves of HIV-infected patients obtained at autopsy did not show evidence of increased oxidative stress. These observations suggest a differential effect on the axon and cell body. Different mechanisms of injury may be operative in these two structures.
PMCID: PMC2270478  PMID: 18177640
neuropathy; dorsal root ganglia; macrophages; neurotoxicity; axonal retraction; mitochondria; chemokine; AIDS
22.  Reduction of Disease Activity and Disability With High-Dose Cyclophosphamide in Patients With Aggressive Multiple Sclerosis 
Archives of neurology  2008;65(8):1044-1051.
To explore the safety and effectiveness of high-dose cyclophosphamide (HiCy) without bone marrow transplantation in patients with aggressive multiple sclerosis (MS).
A 2-year open-label trial of patients with aggressive relapsing-remitting multiple sclerosis (RRMS) given an immunoablative regimen of HiCy (50 mg/kg/d for 4 consecutive days) with no subsequent immunomodulatory therapy unless disease activity reappeared that required rescue therapy.
The Johns Hopkins University Multiple Sclerosis Center, Baltimore, Maryland.
A total of 21 patients with RRMS were screened for eligibility and 9 patients were enrolled in the trial. Patients were required to have 2 or more gadolinium-enhancing lesions on each of 2 pretreatment magnetic resonance imaging scans, at least 1 clinical exacerbation in the 12 months prior to HiCy treatment, or a sustained increase of 1.0 point or higher on the Expanded Disability Status Scale (EDSS) in the preceding year.
Patients received 50 mg/kg/d of cyclophosphamide intravenously for 4 consecutive days, followed by 5 μg/kg/d of granulocyte colony-stimulating factor 6 days after completion of HiCy treatment, until the absolute neutrophil count exceeded 1.0×109 cells/L for 2 consecutive days.
Main Outcome Measures
The primary outcome of the study was the safety and tolerability of HiCy in patients with RRMS. Secondary outcome measures included a change in gadolinium-enhancing lesions on magnetic resonance images and a change in disability measures (EDSS and Multiple Sclerosis Functional Composite).
Nine patients were treated and followed up for a mean period of 23 months. Eight patients had failed conventional therapy and 1 was treatment naive. The median age at time of entry was 29 years (range, 20-47 years). All patients developed transient total or near-total pancytopenia as expected, followed by hematopoietic recovery in 10 to 17 days, stimulated by granulocyte colony-stimulating factor. There were no deaths or unexpected serious adverse events. There was a statistically significant reduction in disability (EDSS) at follow-up (mean [SD] decrease, 2.11[1.97]; 39.4%; P=.02). The mean(SD) number of gadolinium-enhancing lesions on the 2 pretreatment scans were 6.5(2.1) and 1.2(2.3) at follow-up (81.4% reduction; P=.01). Two patients required rescue treatment with other immunomodulatory therapies during the study owing to MS exacerbations.
Treatment with HiCy was safe and well tolerated in our patients with MS. Patients experienced a pronounced reduction in disease activity and disability after HiCy treatment. This immunoablative regimen of cyclophosphamide for patients with aggressive MS is worthy of further study and may be an alternative to bone marrow transplantation.
PMCID: PMC2574697  PMID: 18541787
23.  IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis 
Journal of Clinical Investigation  2005;115(10):2731-2741.
Transverse myelitis (TM) is an immune-mediated spinal cord disorder associated with inflammation, demyelination, and axonal damage. We investigated the soluble immune derangements present in TM patients and found that IL-6 levels were selectively and dramatically elevated in the cerebrospinal fluid and directly correlated with markers of tissue injury and sustained clinical disability. IL-6 was necessary and sufficient to mediate cellular injury in spinal cord organotypic tissue culture sections through activation of the JAK/STAT pathway, resulting in increased activity of iNOS and poly(ADP-ribose) polymerase (PARP). Rats intrathecally infused with IL-6 developed progressive weakness and spinal cord inflammation, demyelination, and axonal damage, which were blocked by PARP inhibition. Addition of IL-6 to brain organotypic cultures or into the cerebral ventricles of adult rats did not activate the JAK/STAT pathway, which is potentially due to increased expression of soluble IL-6 receptor in the brain relative to the spinal cord that may antagonize IL-6 signaling in this context. The spatially distinct responses to IL-6 may underlie regional vulnerability of different parts of the CNS to inflammatory injury. The elucidation of this pathway identifies specific therapeutic targets in the management of CNS autoimmune conditions.
PMCID: PMC1224298  PMID: 16184194
24.  TNF-α mediates SDF-1α–induced NF-κB activation and cytotoxic effects in primary astrocytes 
Journal of Clinical Investigation  2001;108(3):425-435.
Stromal-derived cell factor-1α (SDF-1α; CXCL12) and its receptor, CXCR4, are constitutively expressed on neuroepithelial cells and are believed to be involved in both development and pathological processes, such as AIDS-associated neurologic disorders. Here, we demonstrate that SDF-1α activates NF-κB, stimulates production of chemokines and cytokines, and induces cell death in primary astrocytes, effects that depend on ongoing secretion of TNF-α. SDF-1α upregulated TNF-α mRNA and protein secretion, as well as TNF receptor 2 expression. TNF-α treatment mimicked SDF-1α induction of NF-κB, IL-1α/β, and RANTES, as well as cell death; neutralizing antibodies against TNF-α opposed these responses. We also found that SDF-1α activated Erk1 and Erk2 (Erk1/2) MAPK in a biphasic fashion. Early Erk1/2 activation was stimulated directly by SDF-1α and late activation was mediated by TNF-α. PD98059 suppression of early Erk1/2 activation correlated with reduction of SDF-1α–induced TNF-α expression. Late Erk1/2 activation was involved in TNF-α–stimulated NF-κB activation and cytokine induction. SDF-1α was induced in reactive CXCR4-positive astrocytes near axotomized spinal cord motor neurons, consistent with autocrine SDF-1/CXCR4 signaling in these cells. We propose that these novel effects of SDF-1α are relevant to the pathogenic and developmental roles of SDF-1α in the CNS.
PMCID: PMC209361  PMID: 11489936

Results 1-24 (24)