PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Kini, vedhika")
1.  Prenatal and Postnatal Epigenetic Programming: Implications for GI, Immune, and Neuronal Function in Autism 
Autism Research and Treatment  2012;2012:190930.
Although autism is first and foremost a disorder of the central nervous system, comorbid dysfunction of the gastrointestinal (GI) and immune systems is common, suggesting that all three systems may be affected by common molecular mechanisms. Substantial systemic deficits in the antioxidant glutathione and its precursor, cysteine, have been documented in autism in association with oxidative stress and impaired methylation. DNA and histone methylation provide epigenetic regulation of gene expression during prenatal and postnatal development. Prenatal epigenetic programming (PrEP) can be affected by the maternal metabolic and nutritional environment, whereas postnatal epigenetic programming (PEP) importantly depends upon nutritional support provided through the GI tract. Cysteine absorption from the GI tract is a crucial determinant of antioxidant capacity, and systemic deficits of glutathione and cysteine in autism are likely to reflect impaired cysteine absorption. Excitatory amino acid transporter 3 (EAAT3) provides cysteine uptake for GI epithelial, neuronal, and immune cells, and its activity is decreased during oxidative stress. Based upon these observations, we propose that neurodevelopmental, GI, and immune aspects of autism each reflect manifestations of inadequate antioxidant capacity, secondary to impaired cysteine uptake by the GI tract. Genetic and environmental factors that adversely affect antioxidant capacity can disrupt PrEP and/or PEP, increasing vulnerability to autism.
doi:10.1155/2012/190930
PMCID: PMC3420412  PMID: 22934169
2.  The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway 
The A2A adenosine receptor (A2AR)-mediated immunosuppression is firmly implicated in the life-saving down-regulation of collateral tissue damage during the anti-pathogen immune response and in highly undesirable protection of cancerous tissues during anti-tumor immune response. Therefore, depending on specific clinical situation there is a need to either weaken or strengthen the intensity of A2AR signal. While the A2AR-mediated immunosuppression was shown to be T cell autonomous in studies of effector T cells, it was not clear how A2AR stimulation affects regulatory T cells (Treg). Here we show in parallel assays that while A2AR stimulation on T cells directly inhibits their activation, there is also indirect and longer-lasting T cell inhibitory effect through modulation of Treg. A2AR stimulation expanded CD4+ CD25hi FoxP3+ cells, which also express CD39, CD73, and CTLA-4. Treg cultured with A2AR agonist showed increased expression of CTLA-4 and stronger immunosuppressive activity. There was a significant increase of Treg cell number after A2AR stimulation. The CD4+ FoxP3+ population contained those induced from CD4+ CD25− cells, but CD4+ FoxP3+ cells predominantly derived from CD4+ CD25+ natural Treg. Thus, A2AR stimulation numerically and functionally enhanced Treg-mediated immunosuppressive mechanism. These data suggest that the A2AR-mediated stimulation of lymphocytes using A2AR agonists should be considered in protocols for ex vivo expansion of Treg before the transfer to patients in different medical applications.
doi:10.3389/fimmu.2012.00190
PMCID: PMC3389649  PMID: 22783261
regulatory T cells; adenosine; immunosuppression; A2A adenosine receptor; cancer; autoimmune; transplantation
3.  In vivo T Cell Activation in Lymphoid Tissues is Inhibited in the Oxygen-Poor Microenvironment 
Activation of immune cells is under control of immunological and physiological regulatory mechanisms to ensure adequate destruction of pathogens with the minimum collateral damage to “innocent” bystander cells. The concept of physiological negative regulation of immune response has been advocated based on the finding of the critical immunoregulatory role of extracellular adenosine. Local tissue oxygen tension was proposed to function as one of such physiological regulatory mechanisms of immune responses. In the current study, we utilized in vivo marker of local tissue hypoxia pimonidazole hydrochloride (Hypoxyprobe-1) in the flowcytometric analysis of oxygen levels to which lymphocytes are exposed in vivo. The level of exposure to hypoxia in vivo was low in B cells and the levels increased in the following order: T cells < NKT cells < NK cells. The thymus was more hypoxic than the spleen and lymph nodes, suggesting the variation in the degree of oxygenation among lymphoid organs and cell types in normal mice. Based on in vitro studies, tissue hypoxia has been assumed to be suppressive to T cell activation in vivo, but there was no direct evidence demonstrating that T cells exposed to hypoxic environment in vivo are less activated. We tested whether the state of activation of T cells in vivo changes due to their exposure to hypoxic tissue microenvironments. The parallel analysis of more hypoxic and less hypoxic T cells in the same mouse revealed that the degree of T cell activation was significantly stronger in better-oxygenated T cells. These observations suggest that the extent of T cell activation in vivo is dependent on their localization and is decreased in environment with low oxygen tension.
doi:10.3389/fimmu.2011.00027
PMCID: PMC3342240  PMID: 22566817
T cell; oxygen; hypoxia; hyperoxia; Hypoxyprobe-1; cytometry; tumor

Results 1-3 (3)