Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Multisegment Foot Kinematics During Walking in Younger and Older Adults 
Currently, age-related changes in foot mechanics are poorly understood. A greater understanding of the natural changes in foot motion is needed to improve our understanding of pathological foot conditions.
The purpose of this study was to compare multisegment foot kinematic data during gait in younger and older individuals. Eleven (N = 11) adult male participants between the ages of 18 - 30 years (younger group; mean ± SD: 24.6 ± 3.0 years) and eleven (N = 11) adults aged 55 years or older (older group; mean ± SD: 65.0 ± 4.2 years) were recruited for the study. The foot was modeled as a four-segment rigid body model. Three-dimensional kinematic and kinetic gait parameters were recorded using an 8-camera Vicon MCam motion capture system and two Kistler force plates. A MANOVA was used to test for significant differences in mean temporal-spatial data, mean ranges of motion, and mean peak joint angle data between age groups.
No significant differences (P > 0.05) were found between the two age groups for any of the gait parameters. The results of the present study suggest that individuals aged 65.0 ± 4.2 years have foot mechanics that are comparable to younger walkers.
As such, any deviations in motion at this age may be indicative of an underlying disease or disorder.
PMCID: PMC3409621  PMID: 22870173
Gait; Multisegment foot; Aging; Kinematics
2.  Gait Symmetry in Children with Autism 
Autism Research and Treatment  2012;2012:576478.
Most studies examining gait asymmetry have focused on infants and toddlers and have tended to use subjective methods of evaluating movement. No previous studies have examined gait symmetry in older children with autism using objective motion capture systems. The purpose of this paper was to quantify gait symmetry in children with autism versus age-matched controls. Fourteen children with autism (N = 14) and twenty-two (N = 22) age, height, and weight-matched controls participated in the study. An eight camera Vicon motion capture system and four Kistler force plates were used to compute temporal-spatial parameters and symmetry indices during walking. Group differences in these measures were tested using MANOVAs. No significant differences between the autism and control group were found for any of the temporal-spatial measures or symmetry indices. Therefore, results suggest that children with autism demonstrate typical symmetry or interlimb movement during gait. Further research is needed to examine the use of different gait inputs to the symmetry indices (e.g., joint angles and moments). A greater awareness of the movement patterns associated with autism may increase our understanding of this disorder and have important implications for treatment planning.
PMCID: PMC3420413  PMID: 22934175
3.  Comparison of two normative paediatric gait databases 
The availability of age-matched normative data is an essential component of clinical gait analyses. Comparison of normative gait databases is difficult due to the high-dimensionality and temporal nature of the various gait waveforms. The purpose of this study was to provide a method of comparing the sagittal joint angle data between two normative databases. We compared a modern gait database to the historical San Diego database using statistical classifiers developed by Tingley et al. (2002). Gait data were recorded from 60 children aged 1–13 years. A six-camera Vicon 512 motion analysis system and two force plates were utilized to obtain temporal-spatial, kinematic, and kinetic parameters during walking. Differences between the two normative data sets were explored using the classifier index scores, and the mean and covariance structure of the joint angle data from each lab. Significant differences in sagittal angle data between the two databases were identified and attributed to technological advances and data processing techniques (data smoothing, sampling, and joint angle approximations). This work provides a simple method of database comparison using trainable statistical classifiers.
PMCID: PMC1947956  PMID: 17640348
4.  Changes in infant segment inertias during the first three months of independent walking 
During infancy, rapid changes in physical growth affect the size and shape of the body segments. To understand the effects of growth on movement, it is first necessary to quantify rates of development during the acquisition of important motor milestones. The goal of this longitudinal study was to quantify the physical growth of infant body segments during the initial stages of independent walking.
Ten infants (N = 10) aged between 28 and 55 weeks at the beginning of the study were tested biweekly (every two weeks) for three months. A 13-segment mathematical model of the human body was used to estimate the inertial parameters of the infant body segments at each session. An analysis of variance was used to test for significant differences in segment masses between biweekly measures. Polynomial contrasts were used to test for linear trends in the growth data.
Significant differences between biweekly measures of segment mass were found only for the head/neck (F(5,45) = 3.42, p < 0.05), upper trunk (F(5,45) = 4.04, p < 0.01), and lower trunk (F(5,45) = 3.49, p < 0.01). The lower trunk demonstrated a linear increase in mass (F(1,9) = 4.56, p < 0.05). However, the upper trunk demonstrated a quadratic trend in growth (F(1,9) = 9.13, p < 0.01), while the head/neck segment showed a cubic trend in growth (F(1,9) = 3.80, p < 0.05). Significant differences in axial segment masses were also found between subjects (F(9,45) = 5.92, p < 0.001).
Given that postural control proceeds in a cephalocaudal manner, the lower trunk segment would be brought under control last, in terms of the axial segments. Increases in the mass of this segment could constrain the system, thereby acting as a control parameter for the onset and development of motor patterns.
PMCID: PMC1282585  PMID: 16255773

Results 1-4 (4)