Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample 
A Gram-negative, extremely halophilic, coccoid archaeal strain, CM5T, was isolated from a crude sea-salt sample collected near Qingdao, China. The organism grew optimally at 35–40 °C and pH 6.0 in the presence of 20 % (w/v) NaCl. Its colonies were red in colour and it could use glucose as a sole carbon source for growth. The 16S rRNA gene sequence of CM5T was most closely related to those of Halococcus species. Its pattern of antibiotic susceptibility was similar to those of other described Halococcus species. Biochemical tests revealed no sign of H2S production or gelatin liquefaction. The main polar lipids of strain CM5T were phosphatidylglycerol, phosphatidylglycerol methylphosphate and sulfated diglycosyl diether. No phosphatidylglycerol sulfate was present. The DNA G+C content of strain CM5T was 61.2 mol% and it gave DNA–DNA reassociation values of 33.7, 57.1 and 29.6 %, respectively, with Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T and Halococcus morrhuae ATCC 17082T. Based on its morphological and chemotaxonomic properties and phylogenetic analysis of 16S rRNA gene sequence data, we propose that CM5T should be classified within a novel species, Halococcus qingdaonensis sp. nov., with strain CM5T (=CGMCC 1.4243T=JCM 13587T) as the type strain.
PMCID: PMC3182530  PMID: 17329792
2.  Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece 
Three halophilic isolates, strains Halo-G*T, AUS-1 and Naxos II, were compared. Halo-G* was isolated from an evaporitic salt crystal from Baja California, Mexico, whereas AUS-1 and Naxos II were isolated from salt pools in Western Australia and the Greek island of Naxos, respectively. Halo-G*T had been exposed previously to conditions of outer space and survived 2 weeks on the Biopan facility. Chemotaxonomic and molecular comparisons suggested high similarity between the three strains. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains clustered with Halorubrum species, showing sequence similarities of 99.2–97.1 %. The DNA–DNA hybridization values of strain Halo-G*T and strains AUS-1 and Naxos II are 73 and 75 %, respectively, indicating that they constitute a single species. The DNA relatedness between strain Halo-G*T and the type strains of 13 closely related species of the genus Halorubrum ranged from 39 to 2 %, suggesting that the three isolates constitute a different genospecies. The G+C content of the DNA of the three strains was 65.5–66.5 mol%. All three strains contained C20C20 derivatives of diethers of phosphatidylglycerol, phosphatidylglyceromethylphosphate and phosphatidylglycerolsulfate, together with a sulfated glycolipid. On the basis of these results, a novel species that includes the three strains is proposed, with the name Halorubrum chaoviator sp. nov. The type strain is strain Halo-G*T (=DSM 19316T =NCIMB 14426T =ATCC BAA-1602T).
PMCID: PMC3182535  PMID: 19567575
3.  Responses of Haloarchaea to Simulated Microgravity 
Astrobiology  2011;11(3):199-205.
Various effects of microgravity on prokaryotes have been recognized in recent years, with the focus on studies of pathogenic bacteria. No archaea have been investigated yet with respect to their responses to microgravity. For exposure experiments on spacecrafts or on the International Space Station, halophilic archaea (haloarchaea) are usually embedded in halite, where they accumulate in fluid inclusions. In a liquid environment, these cells will experience microgravity in space, which might influence their viability and survival. Two haloarchaeal strains, Haloferax mediterranei and Halococcus dombrowskii, were grown in simulated microgravity (SMG) with the rotary cell culture system (RCCS, Synthecon). Initially, salt precipitation and detachment of the porous aeration membranes in the RCCS were observed, but they were avoided in the remainder of the experiment by using disposable instead of reusable vessels. Several effects were detected, which were ascribed to growth in SMG: Hfx. mediterranei's resistance to the antibiotics bacitracin, erythromycin, and rifampicin increased markedly; differences in pigmentation and whole cell protein composition (proteome) of both strains were noted; cell aggregation of Hcc. dombrowskii was notably reduced. The results suggest profound effects of SMG on haloarchaeal physiology and cellular processes, some of which were easily observable and measurable. This is the first report of archaeal responses to SMG. The molecular mechanisms of the effects induced by SMG on prokaryotes are largely unknown; haloarchaea could be used as nonpathogenic model systems for their elucidation and in addition could provide information about survival during lithopanspermia (interplanetary transport of microbes inside meteorites). Key Words: Haloferax mediterranei—Halococcus dombrowskii—Simulated microgravity—Rotary cell culture system—Antibiotic resistance—Lithopanspermia. Astrobiology 11, 199–205.
PMCID: PMC3079168  PMID: 21417742
4.  Communities of Archaea and Bacteria in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps, and Evidence of Ammonia-Oxidizing Crenarchaeota▿  
Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the “Franz-Josef-Quelle” in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (α, β, γ, and δ), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (δ-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.
PMCID: PMC1797131  PMID: 17085711

Results 1-4 (4)