PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  RGDechi-hCit: αvβ3 Selective Pro-Apoptotic Peptide as Potential Carrier for Drug Delivery into Melanoma Metastatic Cells 
PLoS ONE  2014;9(9):e106441.
αvβ3 integrin is an important tumor marker widely expressed on the surface of cancer cells. Recently, we reported some biological features of RGDechi-hCit, an αvβ3 selective peptide antagonist. In the present work, we mainly investigated the pro-apoptotic activity of the molecule and its ability to penetrate the membrane of WM266 cells, human malignant melanoma cells expressing high levels of αvβ3 integrin. For the first time we demonstrated the pro-apoptotic effect and the ability of RGDechi-hCit to enter into cell overexpressing αvβ3 integrin mainly by clathrin- and caveolin-mediated endocytosis. Furthermore, we deepened and confirmed the selectivity, anti-adhesion, and anti-proliferative features of the peptide. Altogether these experiments give insight into the biological behavior of RGDechi-hCit and have important implications for the employment of the peptide as a new selective carrier to deliver drugs into the cell and as a therapeutic and diagnostic tool for metastatic melanoma. Moreover, since the peptide shows a pro-apoptotic effect, a great perspective could be the development of a new class of selective systems containing RGDechi-hCit and pro-apoptotic molecules or other therapeutic agents to attain a synergic action.
doi:10.1371/journal.pone.0106441
PMCID: PMC4172472  PMID: 25248000
2.  Neuroblastoma tumorigenesis is regulated through the Nm23-H1/h-Prune C-terminal interaction 
Scientific Reports  2013;3:1351.
Nm23-H1 is one of the most interesting candidate genes for a relevant role in Neuroblastoma pathogenesis. H-Prune is the most characterized Nm23-H1 binding partner, and its overexpression has been shown in different human cancers. Our study focuses on the role of the Nm23-H1/h-Prune protein complex in Neuroblastoma. Using NMR spectroscopy, we performed a conformational analysis of the h-Prune C-terminal to identify the amino acids involved in the interaction with Nm23-H1. We developed a competitive permeable peptide (CPP) to impair the formation of the Nm23-H1/h-Prune complex and demonstrated that CPP causes impairment of cell motility, substantial impairment of tumor growth and metastases formation. Meta-analysis performed on three Neuroblastoma cohorts showed Nm23-H1 as the gene highly associated to Neuroblastoma aggressiveness. We also identified two other proteins (PTPRA and TRIM22) with expression levels significantly affected by CPP. These data suggest a new avenue for potential clinical application of CPP in Neuroblastoma treatment.
doi:10.1038/srep01351
PMCID: PMC3584926  PMID: 23448979
3.  γ sulphate PNA (PNA S): Highly Selective DNA Binding Molecule Showing Promising Antigene Activity 
PLoS ONE  2012;7(5):e35774.
Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.
doi:10.1371/journal.pone.0035774
PMCID: PMC3346730  PMID: 22586450
4.  Targeting pre-miRNA by Peptide Nucleic Acids 
Artificial DNA, PNA & XNA  2012;3(2):88-96.
PNAs conjugated to carrier peptides have been employed for the targeting of miRNA precursor, with the aim to develop molecules able to interfere in the pre-miRNA processing. The capability of the molecules to bind pre-miRNA has been tested in vitro by fluorescence assayes on Thiazole Orange labeled molecules and in vivo, in K562 cells, evaluating the amount of miRNA produced after treatment of cells with two amounts of PNAs.
doi:10.4161/adna.20911
PMCID: PMC3429535  PMID: 22699795
FACS; fluorescence; miR-210; PNA; pre-miR; thiazole orange
5.  Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells 
Artificial DNA, PNA & XNA  2012;3(2):97-296.
One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis.
doi:10.4161/adna.21061
PMCID: PMC3429536  PMID: 22772035
NF-kappaB; transcription factor decoy; inflammation; Peptide Nucleic Acids; PNA-DNA chimeras
6.  Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation 
PLoS ONE  2011;6(10):e25888.
Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy.
Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity and the activation of the pro-apoptotic caspase cascade. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB, p21, and misfolded or polyubiquitinylated proteins, and additive effects were observed in cells exposed to a combination of both inhibitors without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Finally, molecular modeling studies, to gain insights into the APEH inhibition by the trans10-cis12 CLA isomer, were performed.
Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression.
doi:10.1371/journal.pone.0025888
PMCID: PMC3189933  PMID: 22016782
7.  Evaluation of the anti-angiogenic properties of the new selective αVβ3 integrin antagonist RGDechiHCit 
Background
Integrins are heterodimeric receptors that play a critical role in cell-cell and cell-matrix adhesion processes. Among them, αVβ3 integrin, that recognizes the aminoacidic RGD triad, is reported to be involved in angiogenesis, tissue repair and tumor growth. We have recently synthesized a new and selective ligand of αVβ3 receptor, referred to as RGDechiHCit, that contains a cyclic RGD motif and two echistatin moieties.
Methods
The aim of this study is to evaluate in vitro and in vivo the effects of RGDechiHCit. Therefore, we assessed its properties in cellular (endothelial cells [EC], and vascular smooth muscle cells [VSMC]) and animal models (Wistar Kyoto rats and c57Bl/6 mice) of angiogenesis.
Results
In EC, but not VSMC, RGDechiHCit inhibits intracellular mitogenic signaling and cell proliferation. Furthermore, RGDechiHCit blocks the ability of EC to form tubes on Matrigel. In vivo, wound healing is delayed in presence of RGDechiHCit. Similarly, Matrigel plugs demonstrate an antiangiogenic effect of RGDechiHCit.
Conclusions
Our data indicate the importance of RGDechiHCit in the selective inhibition of endothelial αVβ3 integrin in vitro and in vivo. Such inhibition opens new fields of investigation on the mechanisms of angiogenesis, offering clinical implications for treatment of pathophysiological conditions such as cancer, proliferative retinopathy and inflammatory disease.
doi:10.1186/1479-5876-9-7
PMCID: PMC3027097  PMID: 21232121
8.  An Integrated Structural and Computational Study of the Thermostability of Two Thioredoxin Mutants from Alicyclobacillus acidocaldarius 
Journal of Bacteriology  2003;185(14):4285-4289.
We report a crystallographic and computational analysis of two mutant forms of the Alicyclobacillus acidocaldarius thioredoxin (BacTrx) done in order to evaluate the contribution of two specific amino acids to the thermostability of BacTrx. Our results suggest that the thermostability of BacTrx may be modulated by mutations affecting the overall electrostatic energy of the protein.
doi:10.1128/JB.185.14.4285-4289.2003
PMCID: PMC164891  PMID: 12837806
9.  Formulations for natural and peptide nucleic acids based on cationic polymeric submicron particles 
AAPS PharmSci  2003;6(1):10-21.
This article describes the production and characterization of cationic submicron particles constituted with Eudragit RS 100, plus different cationic surfactants, such as dioctadecyl-dimethyl-ammonium bromide (DDAB18) and diisobutyphenoxyethyl-dimethylbenzyl ammonium chloride (DEBDA), as a transport and delivery system for DNA/DNA and DNA/peptide nucleic acid (PNA) hybrids and PNA-DNA chimeras. Submicron particles could offer advantages over other delivery systems because they maintain unaltered physicochemical properties for long time periods, allowing long-term storage, and are suitable for industrial production. Submicron particles were characterized in terms of size, size distribution, morphology, and zeta potential. Moreover, the in vitro activity and ability of submicron particles to complex different types of nucleic acids were described. Finally, the ability of submicron particles to deliver functional genes to cells cultured in vitro was determined by a luciferase activity assay, demonstrating that submicron particles possess superior transfection efficiency with respect to commercially available, liposome-based transfection kits.
doi:10.1208/ps060102
PMCID: PMC2750937  PMID: 18465254
peptide nucleic acids; delivery; submicron particles

Results 1-9 (9)